Saturday, April 18, 2020

Flight Control System Malfunction/Failure: Airbus Helicopters (Aerospatiale) SA 330 Puma, N339EV; accident occurred January 26, 2018 in Pacific Ocean, Japan

Overall view of the tail rotor drive shaft (upper image) with a closer view of the fractured pieces from the middle portion (lower image). Mating fracture faces of the larger pieces are displayed close to each other and are aligned approximately circumferentially. 

Overall view of the tail rotor drive shaft (upper image) rotated 180 degrees relative to the previous figure with a closer view of the fractured pieces from the middle portion (lower image). Mating fracture faces of the larger pieces are displayed close to each other and are aligned approximately circumferentially.

The National Transportation Safety Board did not travel to the scene of this accident.

Additional Participating Entities:

Federal Aviation Administration; Washington, District of Columbia
Erickson Helicopters; Medford, Oregon

Aviation Accident Factual Report - National Transportation Safety Board:

Investigation Docket - National Transportation Safety Board:

Location: Pacific Ocean
Accident Number: ANC18LA020
Date & Time: 01/26/2018, 1125 UTC
Registration: N339EV
Aircraft Damage: Substantial
Defining Event: Flight control sys malf/fail
Injuries: 2 None
Flight Conducted Under: Part 133: Rotorcraft Ext. Load 

On January 26, 2018, about 1125 universal coordinated time (UTC), an Airbus Helicopters SA330J, N339EV, sustained substantial damage during a fresh water engine rinse aboard the USNS Wally Schirra while in international waters of the Pacific Ocean. The two commercial pilots sustained no injuries. The flight was being operated as a 14 Code of Federal Regulations (CFR) Part 133 visual flight rules external load flight. Visual Meteorological conditions prevailed and company flight following procedures were in effect. The helicopter was shuttling supplies from the Wally Schirra to other naval vessels in the area.

According to the pilot, after landing on the deck of the ship, power was increased on the #2 engine, while the #1 engine was reduced to ground idle in preparation for a fresh water rinse of the engines in order to prevent corrosion from sea spray. The #1 engine was rinsed first, then power was increased on the #2 engine and reduced on the #1 engine in order to rinse the #2 engine. Once the engine speeds were stabilized, he saw the lead mechanic squeeze the trigger on the wand and then there was a rumbling sound followed by a rough shudder through the airframe. He then looked back at the instruments in the cockpit and everything looked normal for the condition the controls were in at the time. About that time there was another shudder through the airframe, and he heard a change in the tone of the engine and gear box noise. He looked back at the gauges and saw that the rotor speed (Nr). had started to rise and the gas generator speed (Ng) of the #2 engine had started to increase also.

The pilot further stated that at this point he secured the fuel boost pumps and the engine control switches both to the off position. He waited for the Nr to slow to below 120 rpm and applied the rotor brake. When the main rotor stopped, the lead mechanic informed him that the tail rotor was still spinning.

The engine rinse procedure utilized by the crew was approved by Turbomeca in 2002 at the request of the operator in order to conduct a rinse with the engines running. The 2002 approved procedure as well as the procedure from the June 2013 Safran Helicopter Engines work card CT 71-00-12 are contained in the public docket for this accident. In the 2002 procedure, the rinse is approved to be completed with both engines running, while the 2013 procedure requires only the engine being rinsed to be running with the other engine shutdown.

Upon inspection, a gash was present along the cover over the #7 tail rotor drive shaft. The #7 tail rotor drive shaft was fractured torsionally about mid-span.

A cockpit voice recorder (CVR) on board confirmed that the crew followed the fresh water rinse procedure as approved by Turbomeca in 2002.

On October 15, 2018, the main gearbox was examined at Airbus Helicopters under the supervision of an aerospace engineer from the National Transportation Safety Board. After removal of the rear casing, some metal fragments of the freewheel unit roller bearing cages were observed in the cavities of both 8,000 RPM rear reduction pinions and were coated with a black greasy substance. Dislocation of the small roller bearings was evident when the left freewheel was removed. Metal pitting were visible on the guide ramps of the freewheel cage.

When the right freewheel assembly was removed, both tabs of the shur-lok washer showed signs of deformation. Impact damage was visible on the rotational stop of the cage of the freewheel rollers. The 8,000RPM rear reduction pinion contained longitudinal roller marks with equally spaced tangential marks. After removal of the right freewheel unit, it was observed that the small roller bearings were dislocated and flat faces were observed on the small rollers .

The left and right 8,000RPM shafts were removed and inspected. The part number (P/N) of these shafts was 330A32-5059-03 and each had modification 07-52390 . This modification was constituted by four half bushings (2 on each end of the shaft) held together by 2 O-rings. The purpose of this modification was to create a "pool" of oil in the vicinity of the both side coupling splines to limit the wear of these splines. The splines on the input side contain small wear and the corresponding bushings are damaged, mainly on the side of the input. On this same side, the O-ring was missing. The O-ring on the freewheel side was in place, but no longer contained the original flexibility. An O-ring was submitted to the NTSB Materials Laboratory for examination. The O-ring had fractured into several pieces and was brittle and stiff. It was visually examined using a 5-50X zoom stereomicroscope and found to be slightly flattened on the top and bottom. The inner diameter exhibited surface crazing and cracking as shown in the attached photographs. There was no sign of excessive heating or chemical degradation. The hardening and crazing were indicative of long term compression and age-related degradation.

Oil samples from the main gearbox, tail rotor gearbox, intermediate gearbox and Engine #1 were submitted to the NTSB Materials Laboratory for examination. The samples were sent to an independent, third-party lab for examination. The samples were tested using Inductively Coupled Plasma Optical Emission spectroscopy (ICP-OES) to look for the presence of metals and other elements. No significant anomalies were found in any of the samples. The slightly elevated presence of iron (Fe) in the main gearbox sample was indicative of typical wear particles found in mechanical systems. The elevated presence of phosphorous in the Engine #1 sample can be indicative of the presence of anti-wear additives in the oil. The metal/element amounts in the other two samples were negligible.

Laboratory results were obtained from the two prior oil samples. The first, dated February 13, 2016 listed Fe at 3.3 parts per million. The second sample, taken in November of 2017 was misplaced by the operator and not found until after the accident. When it was sent for analysis on February 4, 2018, Fe was detected at 14.7 parts per million. The maintenance manual for the SA330 helicopter requires the oil analysis be performed every 150 hours for the main gear box and every 50 hours for the intermediate gearbox. The two samples taken were 88.4 hours and 2 years apart

Following the accident, the operator implemented an internal requirement for oil samples to be analyzed every 25 hours or 3 months.

A weather observation taken aboard the vessel at the time of the accident was reporting, in part, light and variable winds; visibility 25 miles; clouds and ceiling clear; temperature 28° C; altimeter 29.89 inches of Mercury.

Pilot Information

Certificate: Flight Instructor; Commercial
Age:51, Male 
Airplane Rating(s): Single-engine Land
Seat Occupied: Right
Other Aircraft Rating(s):Helicopter 
Restraint Used:
Instrument Rating(s): Helicopter
Second Pilot Present: Yes
Instructor Rating(s): Helicopter
Toxicology Performed: No
Medical Certification: Class 2 Waiver Time Limited Special
Last FAA Medical Exam: 09/30/2018
Occupational Pilot: Yes
Last Flight Review or Equivalent: 09/27/2017
Flight Time: 5685 hours (Total, all aircraft), 406 hours (Total, this make and model), 4817 hours (Pilot In Command, all aircraft), 13 hours (Last 90 days, all aircraft), 5 hours (Last 30 days, all aircraft) 

Co-Pilot Information

Certificate: Flight Instructor; Commercial
Age: 46, Male
Airplane Rating(s): Single-engine Land
Seat Occupied: Left
Other Aircraft Rating(s): Helicopter
Restraint Used:
Instrument Rating(s): Helicopter
Second Pilot Present: Yes
Instructor Rating(s): Helicopter; Instrument Helicopter
Toxicology Performed:No 
Medical Certification: Class 2 Without Waivers/Limitations
Last FAA Medical Exam: 03/17/2017
Occupational Pilot: Yes
Last Flight Review or Equivalent: 07/12/2017
Flight Time:  6382 hours (Total, all aircraft), 73 hours (Total, this make and model), 5239 hours (Pilot In Command, all aircraft), 21 hours (Last 90 days, all aircraft), 8 hours (Last 30 days, all aircraft)

Aircraft and Owner/Operator Information

Registration: N339EV
Model/Series: SA330J PUMA J
Aircraft Category: Helicopter
Year of Manufacture: 1974
Amateur Built: No
Airworthiness Certificate: Transport
Serial Number: 1285
Landing Gear Type: Tricycle
Date/Type of Last Inspection: 04/29/2017, Continuous Airworthiness
Certified Max Gross Wt.: 16303 lbs
Time Since Last Inspection:
Engines: 2 Turbo Shaft
Airframe Total Time: 6689.1 Hours
Engine Manufacturer: Safran
ELT: C126 installed, not activated
Engine Model/Series: TURMO IVC
Registered Owner:SQN HELO 7 LLC
Rated Power: 1495 hp
Operator: Erickson Helicopters
Operating Certificate(s) Held:  Agricultural Aircraft (137); Commuter Air Carrier (135); Rotorcraft External Load (133); On-demand Air Taxi (135)
Operator Does Business As:
Operator Designator Code: 9EKA

Meteorological Information and Flight Plan

Conditions at Accident Site: Visual Conditions
Condition of Light: Day
Observation Facility, Elevation:
Distance from Accident Site:
Observation Time:
Direction from Accident Site:
Lowest Cloud Condition: Clear
Visibility:  25 Miles
Lowest Ceiling: None
Visibility (RVR):
Wind Speed/Gusts: Light and Variable /
Turbulence Type Forecast/Actual: None / None
Wind Direction:
Turbulence Severity Forecast/Actual: N/A / N/A
Altimeter Setting: 29.89 inches Hg
Temperature/Dew Point: 28°C
Precipitation and Obscuration: No Obscuration; No Precipitation
Departure Point:
Type of Flight Plan Filed: VFR
Type of Clearance: VFR
Departure Time:
Type of Airspace: Class G

Wreckage and Impact Information

Crew Injuries: 2 None
Aircraft Damage: Substantial
Passenger Injuries: N/A
Aircraft Fire: None
Ground Injuries: N/A
Aircraft Explosion: None
Total Injuries: 2 None
Latitude, Longitude: 35.245556, 157.236389 (est)

No comments:

Post a Comment