Friday, February 24, 2017

Fuel Starvation: Bellanca 17-30A Super Viking, N6629V; fatal accident occurred November 30, 2014 near Jesse Viertel Memorial Airport (KVER), Boonville, Missouri








Aviation Accident Final Report - National Transportation Safety Board: https://app.ntsb.gov/pdf 

Investigation Docket National Transportation Safety Board: https://dms.ntsb.gov/pubdms


NTSB Identification: CEN15FA060
14 CFR Part 91: General Aviation
Accident occurred Sunday, November 30, 2014 in Boonville, MO
Probable Cause Approval Date: 03/08/2017
Aircraft: BELLANCA 17-30A, registration: N6629V
Injuries: 1 Fatal, 3 Serious.

NTSB investigators either traveled in support of this investigation or conducted a significant amount of investigative work without any travel, and used data obtained from various sources to prepare this aircraft accident report.

The commercial pilot was on a cross-country flight when the airplane encountered deteriorating weather conditions. A surviving passenger reported that the pilot decided to divert to a nearby airport. The airplane experienced a loss of engine power in the airport traffic pattern shortly after the pilot extended the landing gear during the base-to-final turn. The pilot was able to restore engine power briefly by advancing the throttle, but the engine quickly experienced a total loss of power. The passenger stated that the airplane entered an aerodynamic stall about 250 ft above the ground. The airplane subsequently impacted terrain in a near-level attitude. The pilot likely failed to maintain adequate airspeed following the loss of engine power, which resulted in the airplane exceeding its critical angle of attack and a subsequent aerodynamic stall at a low altitude.

A postaccident examination did not reveal any mechanical malfunctions that would have precluded normal engine operation; however, the right main fuel tank was void of any usable fuel, and the left main fuel tank contained about 1.5 gallons of usable fuel. Additionally, no fuel was recovered from the supply line connected to the fuel manifold valve, and only trace amounts of fuel were recovered from the engine-driven fuel pump outflow line. A first responder reported that the main fuel selector was positioned to draw fuel from the auxiliary fuel tanks. Although placarded for use during level flight only, both auxiliary fuel tanks contained sufficient fuel to maintain coverage over their respective outlet ports during maneuvering flight, and would have provided fuel to the engine. As such, it is likely that the main fuel selector was positioned to draw fuel from the right main fuel tank when the airplane initially experienced a loss of engine power due to fuel starvation. The pilot then likely switched to the right auxiliary fuel tank while attempting to restore engine power; however, there was likely insufficient time and altitude to re-establish fuel flow to the engine.

Although the airplane had experienced an alternator malfunction during the previous flight, a possible charging system failure would not have affected engine operation during the accident flight. 

The National Transportation Safety Board determines the probable cause(s) of this accident as follows:
The pilot's failure to maintain adequate airspeed during a forced landing following a total loss of engine power due to fuel starvation, which resulted in the airplane exceeding its critical angle of attack, and an aerodynamic stall at a low altitude. Contributing to the accident was the pilot’s improper fuel management.

Charles K. Sojka is seen here in front of a Piper Cherokee in an old photo of the Woodward Airport. He was a Woodward native and a 1969 graduate of Woodward High School. He was a life-long pilot, flight instructor and Director of Maintenance for the Aviation Department at Kansas State University, Salina. Sojka was killed on November 30th, 2014 in a Bellanca 17-30A Super Viking plane crash in Boonville, Missouri.



The National Transportation Safety Board traveled to the scene of this accident. 

Additional Participating Entities: 
Federal Aviation Administration / Flight Standards District Office; Kansas City, Missouri
Continental Motors, Inc.; Mobile, Alabama

Aviation Accident Factual Report - National Transportation Safety Board:  https://app.ntsb.gov/pdf

Docket And Docket Items - National Transportation Safety Board: https://dms.ntsb.gov/pubdms

https://registry.faa.gov/N6629V

NTSB Identification: CEN15FA060 
14 CFR Part 91: General Aviation
Accident occurred Sunday, November 30, 2014 in Boonville, MO
Aircraft: BELLANCA 17-30A, registration: N6629V
Injuries: 1 Fatal, 3 Serious.

NTSB investigators either traveled in support of this investigation or conducted a significant amount of investigative work without any travel, and used data obtained from various sources to prepare this aircraft accident report.

HISTORY OF FLIGHT

On November 30, 2014, about 0857 central standard time (CST), a Bellanca model 17-30A single-engine airplane, N6629V, was substantially damaged when it collided with terrain during landing approach to runway 36 at Jesse Viertel Memorial Airport (VER), Boonville, Missouri. The commercial pilot was fatally injured and his three passengers were seriously injured. The airplane was registered to and operated by the pilot under the provisions of 14 Code of Federal Regulations Part 91 without a flight plan. Day marginal visual meteorological conditions prevailed for the cross-country flight that departed Spirit of St. Louis Airport (SUS), Chesterfield, Missouri, about 0740, and was originally destined for Charles B. Wheeler Downtown Airport (MKC), Kansas City, Missouri.

The day preceding the accident, the pilot had flown from MKC to SUS. After landing, about 1207, the pilot told a fixed-base operator (FBO) line technician that he had a depleted battery because of an unspecified charging system malfunction. The pilot, who also was an aviation mechanic, removed the battery from the airplane to have it charged. About 1800, the pilot returned to the FBO with the recharged battery. After reinstalling the battery, the pilot started and ran the engine for about 5 to 7 minutes. Following the engine run, the pilot removed the cowling and began adjusting a subcomponent of the alternator control unit (ACU). After adjusting the ACU, the pilot performed another engine test run that lasted about 10 minutes. Following the second engine test run, the pilot told the FBO line technician that the airplane's ammeter was still showing a slight discharge while the engine was running, and that he was uncomfortable departing at night with a charging system issue. The pilot asked if he and his passengers could stay the night in the pilot's lounge so they could depart early the following morning. The pilot also asked for the airplane to be towed to the self-serve fuel pumps because he did not want to deplete the battery further with another engine start.

The pilot prepaid for 20 gallons of fuel at the self-serve fuel pump. According to the line technician, the pilot nearly topped-off the right inboard fuel tank with 13 gallons before switching over to the left inboard tank. Upon a visual inspection of the left inboard tank, the pilot told the line technician that it contained less fuel than he had expected. The pilot proceeded to add the remaining 7 gallons of the prepaid 20 gallons to the left inboard fuel tank. The line technician noted that after fueling the left inboard fuel tank, the fluid level was about 2 inches from the top of the tank. The pilot did not purchase any additional fuel and told the line technician that both outboard "auxiliary" fuel tanks were nearly full. The line technician then towed the airplane back to the ramp for the evening. The line technician reported that the airplane departed FBO ramp the following morning.

According to air traffic control (ATC) data, the first radar return for the accident flight was shortly after the airplane departed from runway 26L at 0740:50 (hhmm:ss). The airplane initially transmitted a visual flight rules (VFR) beacon code (1200) during accident flight. The plotted radar track revealed the airplane flew west-northwest from SUS toward the planned destination. At 0751:03, the airplane stopped transmitting a 1200 beacon code and continued as a primary-only radar target. The location of the final 1200 code was about 21.5 miles west-northwest of SUS at 2,400 ft mean sea level (msl). The lack of a reinforced beacon return was consistent with the pilot turning the airplane transponder off. The primary-only radar track continued west-northwest at an unknown altitude. (The airplane's transponder transmits altitude data to the radar facility; a primary-only radar return does not include altitude data) At 0832:04, the airplane was still traveling west-northwest and was about 5 miles south of Jesse Viertel Memorial Airport (VER). At 0836:21, the airplane descended below available radar coverage about 11 miles west-southwest of VER. There was no radar coverage with the airplane for about 19 minutes. At 0855:30, the radar facility began tracking a VFR reinforced beacon return (1200) about 2.3 miles north of VER descending through 1,500 feet msl. The time and location of the radar returns are consistent with the accident flight maneuvering to land at VER. The airplane entered a left downwind for runway 36 at 1,200 feet msl. At 0856:49, the last recorded radar return was about 0.9 mile southwest of the runway 36 threshold at 1,100 feet msl (about 400 feet above the ground).

According to one of the surviving passengers, while enroute at an altitude of 2,000 to 3,000 ft msl, the airplane encountered a line of "dense clouds" near Sedalia, Missouri. The pilot attempted to navigate beneath the clouds, at an altitude of about 1,500 ft msl, before deciding to make a course reversal and divert to a nearby airport. The pilot told the passenger, who was seated in the forward-right seat, to be on the lookout for towers and obstructions because of their low proximity to the ground. The passenger reported that after flying east for a few minutes the pilot identified VER on his Apple iPad Mini. The flight approached the airport traffic pattern from the west and made a left base-to-final turn toward runway 36. The passenger reported that the landing gear extended normally. However, when the pilot reduced engine power, in attempt to reduce airspeed, the engine experienced a loss of power. The pilot was able to restore engine power briefly by advancing the throttle, but the engine quickly lost total power. The passenger reported that the pilot then began making rapid changes to the engine throttle and mixture control without any noticeable effect to engine operation. The passenger stated that as the pilot prepared for a forced landing the airplane encountered an aerodynamic stall about 250 ft above the ground. The passenger did not recall the airplane impacting the ground.

PERSONNEL INFORMATION

According to Federal Aviation Administration (FAA) records, the 63-year-old pilot held a commercial pilot certificate with single engine land, single engine sea, multiengine land, and instrument airplane ratings. He also held a flight instructor certificate with single engine, multiengine, and instrument airplane ratings. The pilot's last aviation medical examination was on April 11, 2014, when he was issued a third-class medical certificate with a limitation for corrective lenses. A search of FAA records showed no previous accidents, incidents, or enforcement proceedings. The pilot completed a flight review, as required by FAA regulation 61.56, on November 12, 2014, in a single-engine Cessna model 180 airplane.

The pilot's flight history was reconstructed using his pilot logbook and a computer spreadsheet. The last flight entry in the pilot logbook was dated January 8, 2012. The computer spreadsheet was last updated on November 16, 2014, at which time he had accumulated 3,036 hours total flight time, of which 2,955 hours were listed as pilot-in-command. He had accumulated 2,428 hours in single engine airplanes and 608 hours in multi-engine airplanes. Additionally, he had logged 43 hours in actual instrument meteorological conditions, 175 hours in simulated instrument meteorological conditions, and 233 hours at night.

According to available logbook documentation, the pilot had flown 19 hours during the previous 6 months, 10 hours during prior 90 days, and 3 hours in the month before the accident flight. According to a flight-monitoring website, FlightAware.com, the pilot had flown 1.3 hours during the 24-hour period preceding the accident flight.

AIRCRAFT INFORMATION

The accident airplane was a 1970 Bellanca model 17-30A, Super Viking, serial number 30312. The Super Viking is a single-engine, low wing monoplane with an all-wood wing construction and a fabric covered steel-tube fuselage. A 300-horsepower Continental Motors model IO-520-K reciprocating engine, serial number 209048-70K, powered the airplane through a constant speed, three blade, Hartzell model HC-C3YF-1RF propeller. The airplane had a retractable tricycle landing gear, was capable of seating the pilot and three passengers, and had a maximum gross weight of 3,325 pounds. The FAA issued the accident airplane a standard airworthiness certificate on October 23, 1970. The pilot purchased the airplane on July 5, 2014.

The airplane's recording tachometer meter indicated 621.4 hours at the accident site. The airframe and engine had accumulated a total service time of 2,858.7 hours. The engine had accumulated 1,429.7 hours since the last major overhaul completed on December 10, 1976. The engine had accumulated 206.1 hours since a top overhaul that was completed on December 8, 2007. The last annual inspection of the airplane was completed on November 1, 2014, at 2,853.5 total airframe hours. The airplane had accumulated 5.2 hours since the last annual inspection. A postaccident review of the maintenance records found no history of unresolved airworthiness issues.

METEOROLOGICAL INFORMATION

The National Weather Service (NWS) Surface Analysis Chart for 0900 CST depicted a strong cold front immediately east of the accident site. The front stretched across Missouri between the departure airport and the planned destination. The cold front was associated with a defined wind shift and low stratiform clouds behind the front. There were several weather stations located near the accident site that had surface visibility restrictions in fog and mist. Weather radar imagery did not depict any significant weather echoes in the area of the accident site; however, the weather radar did detect a fine line of very light intensity echoes associated with the cold front. Satellite imagery depicted a band of low stratiform clouds extending over the accident site westward through the Kansas City area. The cloud band was located along and behind the cold front. The NWS 12-hour Surface Prognostic Chart depicted a cold front along the planned route of flight, a strong pressure gradient behind the front supporting strong north-northwest winds, and an extensive portion of Missouri that had marginal visual flight rules (MVFR) weather conditions.

At 0855 CST, an automated surface weather observation station located at Jesse Viertel Memorial Airport (VER), Boonville, Missouri, reported: wind 310 degrees at 13 knots, gusting 16 knots; broken cloud ceilings at 2,600 ft above ground level (agl) and 3,400 ft agl, overcast ceiling at 4,100 ft agl; 10 mile surface visibility; temperature 11 degrees Celsius; dew point 7 degrees Celsius; and an altimeter setting of 29.82 inches of mercury.

At 0853 CST, the weather conditions at Sedalia Memorial Airport (DMO), located near where a passenger reported the accident flight had encountered a line of "dense clouds", included a broken ceiling at 1,700 ft agl, another broken ceiling at 2,400 ft agl, and an overcast ceiling at 3,000 feet agl.

At 0854 CST, a surface observation made at the planned destination (MKC), included instrument flight rules (IFR) weather conditions, including an 800 ft agl cloud ceiling and 4 miles surface visibility with mist.

A review of weather briefing requests made to Automated Flight Service Stations (AFSS) and Direct User Access Terminal Service (DUATS) vendors established that the pilot did not receive a formal weather briefing before departure.

AIRPORT INFORMATION

The Jesse Viertel Memorial Airport (VER), located about 3 miles southeast of Boonville, Missouri, was served by a single runway: 18/36 (4,000 ft by 75 ft, asphalt). The airport elevation was 715 ft msl.

WRECKAGE AND IMPACT INFORMATION

A postaccident examination revealed that the airplane impacted a harvested soybean field on a 305-degree magnetic heading. The initial point-of-impact consisted of three parallel depressions in the field that were consistent with the spacing of the airplane's three landing gear. The main wreckage was located about 24 ft from the initial point-of-impact in an upright position. The accident site was located along the extended runway centerline about 0.4 miles south of the runway 36 threshold. Flight control continuity was confirmed from the cockpit controls to the individual flight control surfaces. The wing flaps were about 1/2 of their full deflection. The landing gear selector switch was in the DOWN position; however, all three landing gear assemblies had collapsed during the impact sequence. The main fuel selector was in the OFF position; however, a first responder had moved the fuel selector from the AUX position to OFF during rescue efforts. Additionally, the first responder turned the engine magneto/ignition key to OFF and disconnected the battery terminals after hearing the sound of an electric motor located under the floorboards. (The sound of an electric motor was later identified to be the electrohydraulic motor for the landing gear extension/retraction system.) The auxiliary fuel tank selector was in the RIGHT position. The electrical master switch was in the ON position. The digital transponder was in the ON/Altitude Encoding position. The electric fuel pump switch was in the OFF position. There were no anomalies identified during functional tests of the electric fuel pump and the aerodynamic stall warning system. The postaccident airframe examination revealed no evidence of a mechanical malfunction or failure that would have precluded normal operation.

The airplane was equipped with two inboard main fuel tanks and two outboard auxiliary fuel tanks. The reported capacity of each main fuel tank was 19 gallons, of which 15.5 gallons were usable per tank. The reported capacity of each outboard auxiliary fuel tank was 17 gallons; however, according to a cockpit placard, the auxiliary tanks were for use during level flight only. A visual examination of the four fuel tanks revealed no damage or evidence of a fuel leak. The left main tank contained about 5 gallons of fuel. The right main tank contained 3-1/2 pints of fuel. The left auxiliary tank was near its 17-gallon capacity. The right auxiliary tank contained about 11 gallons of fuel. There was no fuel recovered from the supply line connected to the inlet port of the engine-driven fuel pump; however, the gascolator drain had fractured during impact and there was evidence of a small fuel spill underneath the gascolator assembly at the accident site. There was a trace amount of fuel recovered from the engine-driven fuel pump outflow line. There was no fuel recovered from the fuel supply line connected to the fuel manifold valve.

The engine remained partially attached to the firewall by its engine mounts and control cables. Mechanical continuity was confirmed from the engine components to their respective cockpit engine controls. Internal engine and valve train continuity was confirmed as the engine crankshaft was rotated. Compression and suction were noted on all cylinders in conjunction with crankshaft rotation. The upper spark plugs were removed and exhibited features consistent with normal engine operation. Both magnetos provided spark on all leads when rotated. There were no obstructions between the air filter housing and the fuel control unit. The three blade propeller and crankshaft flange had separated from the engine. The propeller blades exhibited minor burnishing of the blade face and back. One blade appeared straight. Another blade exhibited a shallow S-shape bend along its span. The remaining blade was bent aft about midspan. The postaccident examination revealed no evidence of a mechanical malfunction or failure that would have precluded normal engine operation.

MEDICAL AND PATHOLOGICAL INFORMATION

On December 1, 2014, at the request of the Cooper County Coroner, the Boone/Callaway County Medical Examiner's Office located in Columbia, Missouri, performed an autopsy on the pilot. The cause of death was attributed to multiple blunt-force injuries sustained during the accident. The FAA's Civil Aerospace Medical Institute located in Oklahoma City, Oklahoma, performed toxicology tests on samples obtained during the autopsy. The toxicological test results were negative for carbon monoxide, ethanol, and all drugs and medications.

TESTS AND RESEARCH

Four personal electronic devices were recovered at the accident site and sent to the National Transportation Safety Board (NTSB) Vehicle Recorders Laboratory in Washington D.C. for potential non-volatile memory (NVM) data recovery.

An examination of the pilot's Apple iPad Mini revealed it had the ForeFlight application installed. The application's map page displayed route information for a flight from SUS to MKC. The specifics of the flight included a calculated distance of 186 nautical miles between SUS and MKC, a calculated course of 281 degrees magnetic, an estimated time enroute of 1 hour 10 minutes (calculated using 160 knots true airspeed without the effect of winds aloft), and an calculated fuel consumption of 17.4 gallons. There was no track history for the accident flight; the option to record a track history was not selected for the accident flight. The most recent track history was for a flight completed on August 24, 2014. Further examination of the device established that the text messages, photos, and internet browser history did not contain any information pertinent information to the investigation. According to a passenger, the pilot had used the iPad Mini to navigate during the accident flight.

An examination of a passenger's Samsung Galaxy S III smartphone revealed that there were four photos taken during the accident flight between 0826:47 and 0831:51. During the five-minute period of recovered photos, the observed cloud cover near the airplane increased from clear skies to low-level, overcast stratocumulus clouds. Further examination of the device established that the text messages did not contain any information pertinent information to the investigation.

The remaining two devices, a Motorola Droid Smartphone and an Apple iPod Touch, did not contain any data pertinent to the accident investigation.

ADDITIONAL DATA/INFORMATION

According to available air traffic control data, the accident flight was at least 1 hour 17 minutes in duration. According to the airplane's owner manual, the expected fuel consumption rate at 2,500 ft msl and 77-percent power was 16.1 gallons per hour. At 77-percent engine power, the accident airplane would have used at least 20.7 gallons of fuel; however, engine operation above 77-percent power and/or insufficient leaning would have consumed additional fuel.



 






NTSB Identification: CEN15FA060 
14 CFR Part 91: General Aviation
Accident occurred Sunday, November 30, 2014 in Boonville, MO
Aircraft: BELLANCA 17-30A, registration: N6629V
Injuries: 1 Fatal,3 Serious.

This is preliminary information, subject to change, and may contain errors. Any errors in this report will be corrected when the final report has been completed. NTSB investigators either traveled in support of this investigation or conducted a significant amount of investigative work without any travel, and used data obtained from various sources to prepare this aircraft accident report.

On November 30, 2014, about 0900 central standard time, a Bellanca model 17-30A airplane, N6629V, was substantially damaged when it collided with terrain during landing approach to runway 36 at Jesse Viertel Memorial Airport (VER), Boonville, Missouri. The commercial pilot was fatally injured and his 3 passengers were seriously injured. The airplane was registered to and operated by the pilot under the provisions of 14 Code of Federal Regulations Part 91 without a flight plan. Day visual meteorological conditions prevailed for the cross-country flight that departed Spirit of St. Louis Airport (SUS), Chesterfield, Missouri, about 0738, and was originally destined for Charles B. Wheeler Downtown Airport (MKC), Kansas City, Missouri.

The day before the accident, the pilot had flown from MKC to SUS. After landing, about 1207, the pilot told a fixed-base operator (FBO) line technician that he had a depleted battery because of an unspecified charging system malfunction. The pilot, who also was an aviation mechanic, removed the battery from the airplane to have it charged. About 1800, the pilot returned to the FBO with the recharged battery. After reinstalling the battery, the pilot started and ran the engine for about 5 to 7 minutes. Following the engine run, the pilot removed the cowling and began adjusting a subcomponent of the alternator control unit (ACU). After adjusting the ACU, the pilot performed another engine test run that lasted about 10 minutes. Following the second engine test run, the pilot told the FBO line technician that the airplane's ammeter was still showing a slight discharge while the engine was running, and that he was uncomfortable departing at night with a charging system issue. The pilot asked if he and his passengers could stay the night in the pilot's lounge so they could depart early the following morning. The pilot also asked for the airplane to be towed to the self-serve fuel pumps because he didn't want to further deplete the battery with another engine start.

The pilot prepaid for 20 gallons of fuel at the self-serve fuel pump. According to the line technician, the pilot nearly topped-off the right inboard fuel tank with 13 gallons before switching over to the left inboard tank. Upon a visual inspection of the left inboard tank, the pilot told the line technician that it contained less fuel than he had expected. The pilot proceeded to add the remaining 7 gallons of the prepaid 20 gallons to the left inboard fuel tank. The line technician noted that after fueling the left inboard fuel tank, the fluid level was about 2 inches from the top of the tank. The pilot did not purchase any additional fuel and told the line technician that both outboard "auxiliary" fuel tanks were nearly full. The line technician then towed the airplane back to the ramp for the evening. The line technician reported that the airplane departed FBO ramp the following morning.

According to one of the surviving passengers, while enroute at an altitude of 2,000 to 3,000 feet mean sea level, the flight encountered a line of "dense clouds" near Sedalia, Missouri. The pilot attempted to navigate beneath the clouds, at an altitude of about 1,500 feet msl, before deciding to make a course reversal and locate a nearby airport to divert to. The pilot told the passenger, who was seated in the forward-right seat, to be on the lookout for towers and obstructions because of their low proximity to the ground. The passenger reported that after flying east for a few minutes the pilot identified VER on his tablet computer. The flight approached the airport traffic pattern from the west and made a left base-to-final turn toward runway 36. The passenger reported that the pilot extended the landing gear without any difficulties. However, when the pilot reduced engine power, in attempt to reduce airspeed, the engine experienced a loss of power. The pilot was able to briefly restore engine power by advancing the throttle, but the engine quickly lost total power. The passenger reported that the pilot then began making rapid changes to the engine throttle and mixture control without any noticeable effect to engine operation. The passenger stated that the airplane eventually "stalled completely", about 250 feet above the ground, as the pilot prepared for a forced landing; however, the passenger did not recall the airplane impacting terrain.

A postaccident examination revealed that the airplane impacted a harvested soybean field on a 305 degree magnetic heading. The initial point of impact consisted of three parallel depressions in the field that were consistent with the spacing of the accident airplane landing gear. The main wreckage was located about 24 feet from the initial point of impact in an upright position. The accident site was situated along the extended runway 36 centerline, about 0.4 miles south of the runway approach threshold. Flight control continuity was confirmed from the cockpit controls to the individual flight control surfaces. The electric master switch was found in the "on" position. The wing flaps were observed to be positioned about 1/2 of their full deflection. The landing gear selector switch was in the "down" position; however, all three landing gear assemblies had collapsed during the accident. The main fuel selector was found in the "off" position; however, a first responder had moved the fuel selector from the "auxiliary" position to the "off" position during rescue efforts. The first responder also turned the engine magneto/ignition key to "off" and disconnected the battery terminals after hearing the sound of an electric motor located under the floorboards. (The sound of an electric motor was later identified to be the electrohydraulic motor for the landing gear extension/retraction system.) The auxiliary fuel tank selector was found positioned to the "right" auxiliary wing tank. (The auxiliary fuel tank selector had two positions, "right auxiliary" or "left auxiliary.") The electric fuel pump switch was found in the "off" position. There were no anomalies identified during functional tests of the electric fuel pump and the aerodynamic stall warning system.

The airplane was equipped with two inboard "main" fuel tanks and two outboard "auxiliary" fuel tanks. The reported capacity of each inboard fuel tank was 19 gallons, of which 15.5 gallons were useable per tank. The left inboard tank contained about 5 gallons of fuel. The right inboard tank contained 3-1/2 pints of fuel. The inboard fuel tanks appeared to be undamaged and there was no evidence of a fuel leak from either tank. The reported capacity of each outboard "auxiliary" fuel tank was 17 gallons; however, those tanks were placarded for level flight only. The outboard fuel tanks also appeared to be undamaged and there was no evidence of a fuel leak from either tank. A visual inspection of the left outboard tank confirmed that it was filled near its capacity. The right outboard tank contained about 11 gallons of fuel. No fuel was recovered from the fuel supply line connected to the engine-driven fuel pump inlet port; however, the fuel gascolator drain had fractured during the accident and there was evidence of a small fuel spill underneath the gascolator assembly at the accident site. Only trace amounts of fuel were recovered from the engine-driven fuel pump outflow fuel line. No fuel was recovered from the fuel supply line connected to the flow-divider assembly.

The engine remained partially attached to the firewall by its engine mounts and control cables. Internal engine and valve train continuity was confirmed as the engine crankshaft was rotated. Compression and suction were noted on all cylinders in conjunction with crankshaft rotation. The upper spark plugs were removed and exhibited features consistent with normal engine operation. Both magnetos provided spark on all leads when rotated. There were no obstructions between the air filter housing and the fuel control unit. Mechanical continuity was confirmed from the engine components to their respective cockpit engine controls. The postaccident examination revealed no evidence of mechanical malfunctions or failures that would have precluded normal engine operation.

According to Federal Aviation Administration (FAA) air traffic control data, the accident flight departed SUS around 0738. According to local law enforcement, the initial 911-emergency call was received at 0901. As such, the accident flight, from takeoff to the accident, was at least 1 hour 22 minutes in duration. According to the airplane's owner manual, the expected fuel consumption rate at 2,500 feet msl and 77-percent power was 16.1 gallons per hour. At 77-percent engine power, the accident flight would have consumed at least 22 gallons of fuel; however, engine operation above 77-percent power and/or insufficient leaning would have consumed additional fuel.

At 0855, the VER automated surface observing system reported: wind 310 degrees at 13 knots, gusting 16 knots; broken cloud ceilings at 2,600 feet above ground level (agl) and 3,400 feet agl, overcast ceiling at 4,100 feet agl; 10 mile surface visibility; temperature 11 degrees Celsius; dew point 7 degrees Celsius; and an altimeter setting of 29.82 inches of mercury.

Cessna 414A Chancellor, N414JM: Incident occurred February 24, 2017 at Easterwood Field Airport (KCLL) College Station, Brazos County, Texas

http://registry.faa.gov/N414JM

Aircraft getting in and out of Easterwood Airport were slowed down Friday afternoon after the main runway was shut down.   That’s after a private plane blew a tire.

College Station fire department battalion chief Greg Rodgers says the pilot and two passengers were not injured, and the plane had no other damage. 

 Airport manager Josh Abramson says aircraft was diverted to the alternate runway.



COLLEGE STATION, Tex. (KBTX)- There were no injuries reported after a private plane slid off the runway at Easterwood Airport Friday afternoon.

College Station firefighters responded to an aircraft emergency at the airport.

Upon landing one of the main wheels of a Cessna 414A Chancellor plane buckled causing the aircraft to slide. 

Due to the softened ground, it took a few hours to extract the plane and realign the wheel.

There were 3 people on the plane, but none of them are seriously hurt.


Just before 7 p.m. Friday, airport director Joshua Abramson said the aircraft was cleared and the runway and airport were in full operation. 

Source:  http://www.kbtx.com

Delta Airlines, McDonnell Douglas MD-88, N918DL: Incident occurred February 24, 2017 at Charlotte Douglas International Airport (KCLT), North Carolina




Delta Air Lines Inc: http://registry.faa.gov/N918DL

CHARLOTTE, N.C. – A Delta flight from Charlotte to Atlanta was forced to make an emergency landing Friday after it struck a bird.

According to Charlotte Douglas International Airport officials, an alert was called in from the crew about a possible strike just before 9:30 a.m. Officials say the plane landed safely and taxied to the gate.

Air Traffic Control transmissions overheard the pilot of the plane saying the flight hit a flock of birds at around 1,000 feet on takeoff. 

Delta Airlines released the following statement after the strike:


"The crew of Delta flight 1591 from Charlotte to Atlanta elected to return to Charlotte after encountering a bird shortly after departure. The McDonnell Douglas MD-88 aircraft landed without incident, taxied to the gate normally and the 122 customers are being reaccommodated on alternate flights. The safety of Delta’s customers and crew is our top priority and we apologize for the inconvenience."

Officials say that no one was injured during the incident.

Last week, an American Airlines flight bound for Gulfport, Mississippi struck a deer on takeoff at Charlotte Douglas. 

Story and video:  http://www.wcnc.com

Trick Trikes 582 Cyclone Storm, N993RA: Accident occurred March 24, 2015 in Live Oak, Suwannee County, Florida

The National Transportation Safety Board did not travel to the scene of this accident.

Additional Participating Entity:

Federal Aviation Administration / Flight Standards District Office; Tampa, Florida 

Aviation Accident Final Report -  National Transportation Safety Board: https://app.ntsb.gov/pdf


Docket And Docket Items - National Transportation Safety Board: https://dms.ntsb.gov/pubdms


Aviation Accident Data Summary - National Transportation Safety Board: https://app.ntsb.gov/pdf



NTSB Identification: ERA15LA168
14 CFR Part 91: General Aviation
Accident occurred Tuesday, March 24, 2015 in Live Oak, FL
Probable Cause Approval Date: 02/13/2017
Aircraft: TRICK TRIKES 582 CYCLONE STORM, registration: N993RA
Injuries: 2 Minor.

NTSB investigators may not have traveled in support of this investigation and used data provided by various sources to prepare this aircraft accident report.

While flying about 1,000 ft above ground level (agl) during a flight test for the issuance of a sport pilot certificate, the sport pilot examiner instructed the sport pilot applicant to reduce power to idle for a simulated loss of engine power. The applicant chose a suitable field, began a spiral descent, and positioned the weight-shift-control aircraft for the simulated off-airport landing. When the aircraft was about 50 ft agl, the maneuver was terminated, and the examiner told the applicant to add power and go around. The applicant immediately started turning away from the field and then rapidly advanced the throttle. The engine sputtered and did not respond to the throttle input, and the aircraft then impacted trees. The applicant reported that at no time during the descent with the power reduced did he clear the engine nor did he recall the examiner telling him to clear the engine while descending at a reduced power setting. The applicant added that he mistakenly turned the aircraft before adding power and that, if he had not done so, he could have successfully landed it in the field.

Postaccident examination of the aircraft, which included an operational test of the engine, revealed no evidence of mechanical malfunctions or failures that would have precluded normal operation. The applicant’s failure to clear the engine during the prolonged descent and his subsequent rapid advancement of the throttle after terminating the simulated loss of engine power likely caused excessive fuel in the cylinders, which would have led to the engine’s failure to respond to throttle input.

The National Transportation Safety Board determines the probable cause(s) of this accident as follows:
The student pilot applicant’s failure to clear the engine during a prolonged descent of a simulated engine failure and his subsequent rapid throttle input at the completion of the maneuver, which resulted in the engine’s failure to respond. Contributing to the accident was the sport pilot applicant's decision to turn the aircraft away from a suitable landing area before adding power.

On March 24, 2015, about 1915 eastern daylight time, a privately owned and operated Trick Trikes 582 Cyclone Storm weight-shift control aircraft, N993RA, was substantially damaged when it collided with trees during a forced landing near Live Oak, Florida. The sport pilot applicant (SPA) owner and sport pilot examiner (SPE) sustained minor injuries. Visual meteorological conditions prevailed at the time and no flight plan was filed for the instructional flight that was conducted under the provisions of 14 Code of Federal Regulations Part 91. The flight originated about 1845, from a private airstrip near Live Oak, Florida.

Earlier that day the SPA flew the accident aircraft with his instructor for about 1 hour and no discrepancies were reported with the engine during that flight. Following the flight, the SPA drove to the SPE's location and passed the oral portion of the practical test for issuance of a sport pilot certificate. The SPA then drove to where the aircraft was located, fueled it, performed a preflight inspection, and then flew to the location of the SPE, landing uneventfully.

Before departure of the accident flight, a preflight inspection and an engine run-up were performed; no discrepancies were reported. The flight departed with "at least" 5 gallons of fresh fuel on-board that he mixed with a little more than a 50:1 ratio of fuel to two-cycle engine oil. After takeoff, the SPA performed maneuvers, and while flying about 1,000 feet above ground level (agl) with fields nearby, the SPE informed the SPA that they would be performing emergency power off procedures, and asked him to reduce power. He did so, selected a suitable landing field, and surveyed the condition of the field while in a spiral descent. He set up to land in the field, and when the aircraft was aligned with the field about 50 feet agl, the SPE said the maneuver was terminated and to add power and go-around. The SPA immediately started turning, and then added power, but the engine sputtered and did not respond to the throttle input. The aircraft subsequently impacted trees. The SPA indicated that at no time during the descent with the power reduced did he add power to "clear" the engine, nor did he recall the SPE advising him to "clear" the engine while descending at a reduced power setting. He also indicated that he mistakenly turned before adding power, and otherwise could have landed "OK" in the field he had selected. In hindsight, he believed that the sputtering was related to the lack of clearing of the engine during the descent while at a reduced throttle setting.

The SPE stated that he informed the applicant to turn to a heading of 090 degrees, and as the right turn was started, he informed the SPA to reduce the throttle to idle to simulate an engine failure, and asked him to designate an emergency landing field. The SPA indicated the field below them was suitable, and began a spiral descent. The field below was an open 1.5 square mile area of cattle farm, which consisted of flat grassland with cows and small isolated groves of trees. During the spiral descent he did not recall the SPA "clearing the engine," and thought in hindsight that he should have. At 200 feet agl, he informed the SPA to "throttle up go-around." When the SPA advanced the throttle, the engine did not regain power. The intended landing field was straight ahead, but the aircraft turned left and began to climb immediately. The SPE attempted to recover, but the aircraft entered a left descending turn and hit trees no taller than 15 to 20 feet. The aircraft impacted the ground at an estimated speed of 30 mph. He and the SPA evacuated from the aircraft and walked to a house to summon assistance. The SPE further stated that the engine's failure to respond could have also been due to SPA's rapid throttle application, which he described as "a little fast."

According to the Federal Aviation Administration inspector-in-charge, during his examination of the aircraft, the frame near the nose gear was slightly bent to the right, and the right side diagonal frame tube was significantly bent. One propeller blade of the three bladed propeller was impact damaged, and approximately 5 gallons of uncontaminated fuel were recovered from the aircraft's fuel tank. The examination of the Rotax 582 engine did not reveal any apparent damage. Both carburetor bowls were removed and inspected, no contamination was noted. The aircraft was fueled with the recovered fuel and the impact damaged propeller was removed. The engine was then started immediately and ran to an idle power setting with no issues.

Following recovery of the aircraft, the SPA/owner inspected the engine with the exhaust removed and reported there was no scuffing or scoring of the sides of the pistons; honing marks in each cylinder were present. A replacement propeller was installed and after setting propeller blade angle, the engine was started and achieved near full red line rpm with no discrepancies noted.

According to the engine operator's manual, the engine by design is subject to sudden stoppage, which can result in forced landings or no power landings. The manual also indicated, "Do not idle for prolonged periods as normal rich condition present at this power setting can cause unnecessary carbon deposits and spark plug fouling." A representative of the engine manufacturer reported that during a long underpowered descent, a two-stroke engine such as the accident engine "loads up" because not all fuel is burned in the cylinders. With a rapid throttle advance, the fuel/air ratio becomes too high, causing hesitation until the excess fuel is cleared out.

The aircraft had been operated for about 19 hours since its last condition inspection, which was performed on April 14, 2014. At that time, the aircraft total time was 180 hours.

Petroleum Helicopters Inc (PHI): Accidents occurred May 02, 2017, June 08, 2015, January 04, 2009

The National Transportation Safety Board did not travel to the scene of this accident. 

Additional Participating Entities: 
Federal Aviation Administration / Flight Standards District Office; Baton Rouge, Louisiana
PHI, Inc.; Houma, Louisiana 

Aviation Accident Factual Report - National Transportation Safety Board: https://app.ntsb.gov/pdf

PHI Inc:   http://registry.faa.gov/N457PH

NTSB Identification: CEN17LA174
Nonscheduled 14 CFR Part 135: Air Taxi & Commuter
Accident occurred Tuesday, May 02, 2017 in Venice, LA
Aircraft: BELL 407, registration: N457PH
Injuries: 6 Uninjured.

NTSB investigators may not have traveled in support of this investigation and used data provided by various sources to prepare this aircraft accident report.

On May 2, 2017, about 0635 central daylight time, a Bell 407 helicopter, N457PH, registered to and operated by PHI Helicopters, Inc., Lafayette, Louisiana, made a precautionary landing at Grand Bay Receiving Station near Venice, Louisiana, after the pilot noticed an in-flight vibration. The pilot and five passengers on board the helicopter were not injured and the helicopter sustained substantial damage. The non-scheduled domestic passenger flight was being conducted under the provisions of Title 14 Code of Federal Regulations Part 135, and a company VFR flight plan had been filed. Visual meteorological conditions prevailed at the time of the accident. The cross-country flight originated from Boothville (LS08), Louisiana, at 0629, and was en route to Main Pass 311A in the Gulf of Mexico when the accident occurred.

The pilot said he detected an in-flight vibration and made a precautionary landing on the Grand Bay oil platform. As he was shutting down the engine, the vibration increased and he initiated an emergency shutdown using the rotor brake. Post-accident inspection revealed the tip block and weights had separated from one of the tail rotor blades. Cracks were noted on the tail rotor gear box mounting hardware and the tail boom.

The tail rotor hub and blade assembly, tail rotor gear box with two fractured studs, and tail boom support casting were sent to NTSB's Materials Laboratory for examination. In addition to NTSB's staff, representatives from PHI, Inc., and Bell Helicopter were present for the laboratory examination. Visual examination of the tail rotor confirmed the tip block and blade tip weights were missing from one of the tail rotor blades. According to PHI, the blade had a total service life of 2,658.65 hours, and had a tip block replacement repair approximately 65 hours prior to the separation. The examination found that the tip block separated along the adhesive interface, leaving the majority of the adhesive attached to the blade skin. The adhesive remaining on both skins appeared as a waffle pattern, indicative of partial bonding and subsequent interfacial separation. Approximately 50% of the adhesive surface had smooth and glossy surfaces consistent with voids and lack of contact between the adhesive and the tip block.

The tail rotor gearbox was detached from the tail boom support casting, and the two outboard attach studs were fractured. The entire support casting was fractured and all but 2.7 inches of the skin and the four-inch wide cover were cracked. The fracture in the casting and crack in the skin were consistent with overstress separations. Both fractured left-hand studs displayed reversed bending fatigue fractures. Magnification of the fracture faces revealed features and topographies consistent with multiple origin reversed bending fatigue initiating in the respective root radii on opposed sides of each studs. Fretting and rub marks were observed on both the support casting and tail rotor gearbox where the attach studs were fixed. The tail rotor gearbox alignment dowel pins were missing. The tail boom support casting had cracks at the two forward stud hole locations, and stud hole elongation was noted at the two aft stud hole locations. A circumferential crack had formed from the forward left stud hole along the left sidOn May 2, 2017, about 0635 central daylight time, a Bell 407 helicopter, N457PH, registered to and operated by PHI Helicopters, Inc., Lafayette, Louisiana, made a precautionary landing at Grand Bay Receiving Station near Venice, Louisiana, after the pilot noticed an in-flight vibration. Visual meteorological conditions prevailed at the time of the accident. The non-scheduled domestic passenger flight was being conducted under the provisions of Title 14 Code of Federal Regulations Part 135, and a company VFR flight plan had been filed. The pilot and five passengers on board the helicopter were not injured. The cross-country flight originated from Boothville (LS08), Louisiana, at 0629, and was en route to Main Pass 311A in the Gulf of Mexico when the accident occurred.

The pilot said he detected an in-flight vibration and made a precautionary landing on the Grand Bay oil platform. As he was shutting down the engine, the vibration increased and he initiated an emergency shutdown using the rotor brake. Post-accident inspection revealed the tip block and weights had separated from one of the tail rotor blades. Cracks were noted on the tail rotor gear box mounting hardware and the tail boom.

The tail rotor hub and blade assembly, tail rotor gear box with two fractured studs, and tail boom support casting were sent to NTSB's Materials Laboratory for examination. In addition to NTSB's staff, representatives from PHI, Inc., and Bell Helicopter were present for the laboratory examination. Visual examination of the tail rotor confirmed the tip block and blade tip weights were missing from one of the tail rotor blades. According to PHI, the blade had a total service life of 2,658.65 hours, and had a tip block replacement repair approximately 65 hours prior to the separation. The examination found that the tip block separated along the adhesive interface, leaving the majority of the adhesive attached to the blade skin. The adhesive remaining on both skins appeared as a waffle pattern, indicative of partial bonding and subsequent interfacial separation. Approximately 50% of the adhesive surface had smooth and glossy surfaces consistent with voids and lack of contact between the adhesive and the tip block.

The tail rotor gearbox was detached from the tail boom support casting, and the two outboard attach studs were fractured. The entire support casting was fractured and all but 2.7 inches of the skin and the four-inch wide cover were cracked. The fracture in the casting and crack in the skin were consistent with overstress separations. Both fractured left-hand studs displayed reversed bending fatigue fractures. Magnification of the fracture faces revealed features and topographies consistent with multiple origin reversed bending fatigue initiating in the respective root radii on opposed sides of each studs. Fretting and rub marks were observed on both the support casting and tail rotor gearbox where the attach studs were fixed. The tail rotor gearbox alignment dowel pins were missing. The tail boom support casting had cracks at the two forward stud hole locations, and stud hole elongation was noted at the two aft stud hole locations. A circumferential crack had formed from the forward left stud hole along the left side.

According to Bell Helicopters, after repairs were made to tail rotor blades, a 1,320-lb. pull test was performed on the tip block, a tap test was performed to check for voids, a peel test was performed from skin patch material, and a water leak test was performed. Bell reported that no blade had ever failed the 1,320-lb. pull test, and the facility had made approximately 25 tail rotor tip block crack repairs per year.

NTSB Identification: CEN17LA174 
Nonscheduled 14 CFR Part 135: Air Taxi & Commuter
Accident occurred Tuesday, May 02, 2017 in Boothville, LA
Aircraft: BELL 407, registration: N457PH
Injuries: 6 Uninjured.

This is preliminary information, subject to change, and may contain errors. Any errors in this report will be corrected when the final report has been completed. NTSB investigators may not have traveled in support of this investigation and used data provided by various sources to prepare this aircraft accident report.

On May 2, 2017, about 0635 central daylight time, a Bell 407 helicopter, N457PH, registered to and operated by PHI Helicopters, Inc., Lafayette, Louisiana, made a precautionary landing at Grand Bay receiving station in the Gulf of Mexico, near Boothville, Louisiana, after the pilot noticed a vibration in-flight. Visual meteorological conditions prevailed at the time of the accident.The non-scheduled domestic passenger flight was being conducted under the provisions of Title 14 CFR Part 135, and a company VFR flight plan had been filed and activated. The pilot and four passengers on board the helicopter were not injured.The cross-country flight originated from Boothville (LS08), Louisiana, at 0629, and was en route to Main Pass 311A in the Gulf of Mexico when the accident occurred. 

The pilot had noticed a vibration in-flight and landed the helicopter on the oil platform. As he was shutting down the engine, the vibration worsened and he completed the shutdown using the rotor brake. Post-accident inspection revealed a tip cap had separated from one of the tail rotor blades, and cracks were noted on the tail rotor gear box, mounting hardware, and tail boom, all considered to be substantial damage.




Aviation Accident Final Report - National Transportation Safety Board: https://app.ntsb.gov/pdf

The National Transportation Safety Board did not travel to the scene of this accident. 

Additional Participating Entities:
Federal Aviation Administration / Flight Standards District Office; Baton Rouge, Louisiana 
PHI Inc.; Lafayette, Louisiana 
Bell Helicopter; Hurst, Texas 

Aviation Accident Factual Report - National Transportation Safety Board:  https://app.ntsb.gov/pdf

Docket And Docket Items - National Transportation Safety Board:   https://dms.ntsb.gov/pubdms

PHI Inc:  http://registry.faa.gov/N501PH

NTSB Identification: CEN15LA265
Nonscheduled 14 CFR Part 135: Air Taxi & Commuter
Accident occurred Monday, June 08, 2015 in Pecan Island, LA
Probable Cause Approval Date: 03/23/2017
Aircraft: BELL 407, registration: N501PH
Injuries: 5 Uninjured.

NTSB investigators may not have traveled in support of this investigation and used data provided by various sources to prepare this aircraft accident report.

The operator reported that the helicopter air taxi flight was in cruise about 1,000 ft above ground level when the pilot felt an impact and a strong vibration. The pilot completed an instrument and functional control check and could not immediately identify any anomalies. The pilot stated that, as he slowed the helicopter for landing, he noticed a “heavy mechanical sound and strong vibration.” The vibration worsened, and the pilot began to have difficulty controlling the helicopter; he subsequently initiated an autorotation and deployed the helicopter’s floats. The helicopter touched down in a marshy area, and the pilot and passengers egressed. 

During the landing, the main rotor blades contacted the tail boom and one of the tail rotor blades, resulting in separation of the tail rotor gearbox (TRGB) support structure, which was subsequently located in the marsh. A postaccident examination and metallurgical analysis revealed that fatigue fractures on two of the four TRGB attachment studs likely existed before the accident flight. As the fatigue fractures grew larger through the first two attachment studs, their load-carrying capability lessened, and the additional load was transferred to the remaining attachment studs. The progressive failure of the fatigued TRGB attachment studs led to the vibrations felt by the pilot and, ultimately, the uncommanded right yaw and subsequent loss of tail rotor control. The reverse- bending, high-cycle fatigue fracture initiation mode observed on two of the TRGB studs suggests the fatigue fractures were a result of a loss of torque of the attachment stud nuts. The reason for the loss of torque could not be determined based on the available information. 

The National Transportation Safety Board determines the probable cause(s) of this accident as follows:
The fatigue fracture of the tail rotor gearbox attachment studs, which resulted in a loss of tail rotor control and a subsequent hard landing. 

On June 8, 2015, at 1432 central daylight time, a Bell 407 helicopter, N501PH, made an autorotation to the ground near Pecan Island, Louisiana. The airline transport rated pilot and four passengers were not injured. The helicopter sustained substantial damage. The helicopter was registered to and operated by PHI Inc., Lafayette, Louisiana, under the provisions of 14 Code of Federal Regulations Part 135 as an air taxi flight. Visual meteorological conditions prevailed at the time of the accident and a company flight plan was filed. The flight originated from Vermilion Block 256-E in the Gulf of Mexico about 1400 and was en route to Pecan Island.

The pilot and operator stated that the helicopter was in cruise flight about 1,000 ft above ground level when the pilot felt an impact and a strong vibration of the helicopter. The pilot completed an instrument and functional control check and could not immediately identify any anomalies. Soon after, the pilot initiated an airspeed and power reduction and noticed a heavy mechanical sound and strong vibration. The vibration worsened and the helicopter began a slow right turn so the pilot entered an autorotation. The pilot noticed that as the engine power was reduced further, the helicopter began to oscillate and he experienced difficulty maintaining directional control. With the floats inflated, the pilot made a hard forced landing into a marsh with tall grass. During the landing, the tail rotor gear box (TRGB) separated from the helicopter and was later located in the marsh. 

The helicopter was equipped with Outerlink, which recorded several of the helicopter's parameters, including GPS location, at 30 second intervals. The data was used to correlate the pilot's recollection of the anomalous vibrations, helicopter location, and timeline.

On June 24, 2015, representatives from the FAA, Bell Helicopter, PHI, and the NTSB convened at Bell Helicopter facilities in Hurst, Texas, to examine the recovered tail rotor head, tail rotor blades (TRB), TRGB, TRGB support structure, and remnants of the flexible coupling that was still attached to the TRGB input flange. The exterior of the gearbox exhibited light damage and dirt consistent with immersion in the marsh. The bottom surface of the four mounting feet exhibited evidence of corrosion from exposure to the brackish water. All four TRGB attachment studs were fractured. The four attachment stud locations were labeled "A", "B", "C", and "D" for the purpose of the examination. All gearbox-side attachment studs remained within the gearbox housing; the mating half from attachment stud A was recovered from the accident site. Three of the four TRGB attachment studs exhibited signatures of fatigue fracture. Attachment stud A exhibited reverse bending fatigue through the majority of its cross-section. Attachment stud B exhibited reverse bending fatigue through about 2/3 of its cross-section, and exhibited signatures of low cycle fatigue and overload through the remaining 1/3 of its cross-section. Attachment stud C exhibited signatures of low cycle fatigue and overload. Attachment stud D exhibited signatures of overload. The reverse bending fatigue found on attachment studs A and B were primarily in the lateral axis. Multiple tool ratchet marks were observed at the reverse bending fatigue origins. 

The recovered TRGB support structure exhibited multiple fractures consistent with overload. Impact damage consistent with main rotor blade contact was observed on the forward end of the structure. Mechanical damage and rotational scoring was observed near the forward end near the area where the TRGB input flange and flexible coupling are normally located; the damage exhibited a shiny, silver-colored appearance. The four TRGB mount spot faces exhibited evidence of fretting damage adjacent to the TRGB mount bores. Fractures were observed through the thickness of the mounting bores for attachment studs A and B; the fractures exhibited signatures consistent with overload. Additionally, the bores for attachment studs A and B exhibited thread impressions along the length of the bore and the entirety of the bore circumference. Lastly, the bores for attachment studs A and B, normally circular in shape, exhibited elongation in the same direction as the reverse bending fatigue observed on the studs. The bores for attachment studs C and D exhibited thread impressions along the length of the bore along the fore-aft axis. Evidence of sealant was observed on the TRGB mount spot faces. 

Remnant pieces of flexible coupling remained attached to the TRGB input flange (driveshaft adapter) at its two bolted locations. The fracture surfaces of the remnant flexible coupling exhibited signatures consistent with low cycle reverse bending fatigue. When disassembled, evidence of corrosion and corrosion byproducts were observed in the interior surfaces of the TRGB housing and the input quill duplex bearing assembly. The TRGB input flange could not be rotated manually. 

The two TRBs remained attached to the tail rotor hub; one was relatively intact with minor exterior damage and the other exhibited leading edge damage and the outboard section was separated near midspan. The damaged TRB exhibited signs of high-energy contact with a main rotor blade. 

On August 16, 2016, the TRGB mounting studs were re-examined for evidence of striations. The fracture surfaces of attachment studs A and B were examined under a scanning electron microscope (SEM) and revealed a significant amount of mechanical contact and corrosion damage. The damage precluded a striation count to estimate a crack growth rate for attachment stud A. On attachment stub B, a localized area of intact striations was observed between the mechanical contact damage, which revealed a localized fatigue striation spacing of about 0.000016 inches. 

On September 21, 2016, the damaged TRB was re-examined for evidence of proper bonding. Examination of the tip block bond line on the outboard portion revealed pieces of chopped fiberglass, which is a material used to manufacture the tip block. The tip block adhesive exhibited signatures consistent with a cohesive failure. The tip block adhesive showed evidence of adequate tip block adhesion to the blade skin. 

The operator's maintenance personnel performed a postaccident damage assessment and found a small hole in the aft bulkhead fairing. The hole was continuous to the aft baggage compartment where a brass threaded stud was found inside. The stud was identified as a tail rotor tip block weight.

About three weeks prior to the accident, on May 13 and 15, 2015, the tail rotor blades were repaired and inspected by an outside vendor. On May 21, 2015, the accident tail rotor assembly was reinstalled and balanced by the operator, at an aircraft total time of 16,624 hours, 13 flight hours prior to the accident.

Sikorsky S-76C++, Petroleum Helicopters Inc (PHI), N748P: Fatal accident occurred January 04, 2009 near Houma, Terrebonne Parish, Louisiana


Aviation Accident Final Report - National Transportation Safety Board: https://app.ntsb.gov/pdf

Additional Participating Entities:
Federal Aviation Administration District Office;  Baton Rouge, Louisiana 
Federal Aviation Administration; Washington, District of Columbia
Federal Aviation Administration;  Burlington, Maine
Federal Aviation Administration;  Fort Worth, Texas
National Transportation Safety Board; Washington, District of Columbia
Sikorsky; Stratford, Connecticut
Turbomeca USA; Grand Prairie, Texas
Petroleum Helicopters, Inc.; Lafayette, Louisiana 


Aviation Accident Data Summary -  National Transportation Safety Board:  https://app.ntsb.gov/pdf

NTSB Identification: CEN09MA117
Nonscheduled 14 CFR Part 135: Air Taxi & Commuter
Accident occurred Sunday, January 04, 2009 in Morgan City, LA
Probable Cause Approval Date: 11/24/2010
Aircraft: SIKORSKY S-76C, registration: N748P
Injuries: 8 Fatal, 1 Serious.

NTSB investigators traveled in suppor
t of this investigation and used data obtained from various sources to prepare this aircraft accident report.

A Sikorsky S-76C++ departed on an air taxi flight from PHI, Inc.’s heliport en route to an offshore oil platform with two pilots and seven passengers. Data from the helicopter’s flight data recorder indicated that the helicopter established level cruise flight at 850 feet mean sea level and 135 knots indicated air speed. About 7 minutes after departure, the cockpit voice recorder recorded a loud bang, followed by sounds consistent with rushing wind and a power reduction on both engines and a decay of main rotor revolutions per minute. Due to the sudden power loss, the helicopter departed controlled flight and descended rapidly into marshy terrain.

Examination of the wreckage revealed that both the left and right sections of the cast acrylic windshield were shattered. Feathers and other bird remains were collected from the canopy and windshield at the initial point of impact and from other locations on the exterior of the helicopter. Laboratory analysis identified the remains as coming from a female red-tailed hawk; the females of that species have an average weight of 2.4 pounds. No defects in the materials, manufacturing, or construction were observed. There was no indication of any preexisting damage that caused the windshield to shatter. Thus, the fractures at the top of the right section of the windshield and damage to the canopy in that area were consistent with a bird impacting the canopy just above the top edge of the windshield. The fractures in the other areas of the windshields were caused by ground impact.

The S-76C++ helicopter has an overhead engine control quadrant that houses, among other components, two engine fire extinguisher T-handles and two engine power control levers (ECL). The fire extinguisher T-handles, which are located about 4 inches aft of the captain’s and first officer’s windshields, are normally in the full-forward position during flight, and each is held in place by a spring-loaded pin that rests in a detent; aft pulling force is required to move the T-handles out of their detents. If the T handles are moved aft, a mechanical cam on each T-handle pushes the trigger on the associated ECL out of its wedge-shaped stop, allowing the ECL to move aft, reducing fuel to the engine that the ECL controls. (Flight crews are trained to move an engine’s fire extinguisher T-handle full aft in the event of an in-flight fire so that the ECL can move aft and shut off the fuel flow to the affected engine.) 

The impact of the bird on the canopy just above the windshield near the engine control quadrant likely jarred the fire extinguisher T-handles out of their detents and moved them aft, pushing both ECL triggers out of their stops and allowing them to move aft and into or near the flight-idle position, reducing fuel to both engines. A similar incident occurred on November 13, 1999, in West Palm Beach, Florida, when a bird struck the windshield of an S-76C+ helicopter, N276TH, operated by Palm Beach County. The bird did not penetrate the laminated glass windshield, but the impact force of the bird cracked the windshield and dislodged the fire extinguisher T-handles out of their detents; however, in that case, the force was not great enough to move the ECLs. 

Maintenance records indicated that PHI replaced the original laminated glass windshields delivered on the accident helicopter with after-market cast acrylic windshields about 2 years before the accident. The after-market windshields provided a weight savings over the original windshields. PHI again replaced the windshields (due to cracking) with cast acrylic windshields about 1 year before the accident. Aeronautical Accessories Incorporated (AAI) designed and produced the after-market windshields and obtained supplemental type certificate (STC) approval from the Federal Aviation Administration (FAA) in April 1997. AAI did not perform any bird-impact testing on the cast acrylic windshields supplied for the S-76C++, and the FAA’s approval of the STC did not require such testing. 

PHI also replaced the original windshields on other helicopters with the cast acrylic windshields; one of these helicopters experienced a bird-strike incident about 2 years before the accident. Postincident examination revealed a near-circular hole with radiating cracks near the top center of the right windshield. The bird penetrated the windshield and pushed the right-side T-handle. The trapped remains of the bird prevented the right-side throttle from being reengaged, but the pilot was able to land the helicopter safely. 

In 1978, when the S-76 was certificated, there were no bird-strike requirements. Currently, 14 Code of Federal Regulations 29.631 (in effect since August 8, 1996) states that, at a minimum, a transport-category helicopter, such as the S-76C++, should be capable of safe landing after impact with a 2.2-pound bird at a specified velocity. This requirement includes windshields. Current FAA requirements for transport-category helicopter windshields also state that “windshields and windows must be made of material that will not break into dangerous fragments.” 

About 4 months after this accident, Sikorsky issued a safety advisory to all operators of the S-76C++ regarding the reduced safety of acrylic windshields (both cast and stretched) compared to the helicopter’s original windshield. According to the advisory, the S-76C++’s laminated glass windshield demonstrated more tolerance to penetrating damage from in-flight impacts (such as bird strikes) compared to acrylic windshields. Sikorsky expressed concern in the safety advisory that the presence of a hole through the windshield, whether created directly by object penetration or indirectly through crack intersections, may cause additional damage to the helicopter, cause disorientation or injury to the flight crew, increase pilot workload, or create additional crew-coordination challenges. The investigation revealed that, following this accident, PHI is replacing all of the windshields in its S 76 helicopters with windshields that meet European bird-strike standards. 

Based on main rotor speed decay information provided by Sikorsky, the accident flight crew had, at most, about 6 seconds to react to the decaying rotor speed condition. Had they quickly recognized the cause of the power reduction and reacted very rapidly, they would likely have had enough time to restore power to the engines by moving the ECLs back into position. However, the flight crewmembers were likely disoriented from the bird strike and the rush of air through the fractured windshield; thus, they did not have time to identify the cause of the power reduction and take action to move the ECLs back into position. 

The accident helicopter was not equipped with an audible alarm or a master warning light to alert the flight crew of a low-rotor-speed condition. An enhanced warning could have helped the accident flight crew quickly identify the decaying rotor speed condition and provided the flight crew with more opportunity to initiate the necessary corrective emergency actions before impact.

The National Transportation Safety Board determines the probable cause(s) of this accident as follows:
(1) the sudden loss of power to both engines that resulted from impact with a bird (red-tailed hawk), which fractured the windshield and interfered with engine fuel controls, and (2) the subsequent disorientation of the flight crewmembers, which left them unable to recover from the loss of power. Contributing to the accident were (1) the lack of Federal Aviation Administration regulations and guidance, at the time the helicopter was certificated, requiring helicopter windshields to be resistant to bird strikes; (2) the lack of protections that would prevent the T handles from inadvertently dislodging out of their detents; and (3) the lack of a master warning light and audible system to alert the flight crew of a low-rotor-speed condition.

HISTORY OF FLIGHT

On January 4, 2009, at 1409 Central Standard Time (CST), a Sikorsky S-76C++ helicopter, N748P, registered to and operated by PHI, Inc. (PHI), as a 14 CFR Part 135 air taxi flight using day visual flight rules (VFR), crashed into marshy terrain approximately 7 minutes after takeoff and 12 miles southeast of the departure heliport. The helicopter sustained substantial damage. Both pilots and six of the seven passengers were killed, and 1 passenger was critically injured. The helicopter departed Lake Palourde Base Heliport, a PHI base (7LS3), in Amelia, Louisiana, and was en route to the South Timbalier oil platform ST301B to transport workers from two different oil exploration companies. No flight plan was filed with the Federal Aviation Administration (FAA), nor was one required. A company flight following plan was filed with the PHI Communications Center that included weather updates, pertinent advisories, and position reports. The flight was tracked via Outerlink, a satellite based fleet-tracking system used by the PHI communications center based in Lafayette, Louisiana.

The helicopter departed 7LS3 at 1402. The helicopter’s flight track, recorded by the Outerlink system, ended about 7 minutes after departure, at 1409. There were no reports of any distress calls or emergency transmissions from the flight crew on the PHI radio frequencies, or on any monitored air traffic control frequencies.

A search and rescue operation was initiated at 1414 after the US Air Force received a 406 MHz Emergency Locator Transmitter (ELT) distress signal with the helicopter’s unique identifier and location. Notification was made to PHI and the United States Coast Guard. Shortly thereafter, the helicopter wreckage was found partially submerged in a marshy bayou, near the location of the last Outerlink track. 

Data and audio recordings retrieved from the helicopter’s combination cockpit voice recorder (CVR) and flight data recorder (FDR) indicated that the helicopter was in level cruise flight at 850 feet mean sea level (msl), traveling at 135 knots indicated air speed, when a loud "bang" occurred. Immediately following the "bang," sounds were recorded consistent with rushing wind, engine power reductions on both engines, and main rotor rpm decay. 

AIRCRAFT INFORMATION

General Information

The twin-engine, 14-seat, 2-year-old helicopter was equipped with glass cockpit instrumentation, a combination cockpit voice recorder (CVR) and flight data recorder (FDR), an enhanced ground proximity warning system (EGPWS), solid state quick access recorder (SSQAR), and a VXP vibration recorder. The two Turbomeca Arriel 2S2 turbo shaft engines were equipped with digital engine control units (DECU). All of these devices were recovered and evaluated for recorded information. 

Engine Control Quadrant Design

The Sikorsky S-76C++ helicopter has an overhead engine control quadrant that houses two engine fire extinguisher T-handles, two engine power control levers (ECL), two fuel selector valve control levers, and various switches for other essential functions. The fire extinguisher T-handles, which are about 4 inches aft of the captain’s and first officer’s windshield, are normally in the full forward position, and are held in place by a spring-loaded pin that rests in a detent. Force is required to move the handles out of the detent and aft. In the event of an in-flight engine fire indication, the affected engine's fire extinguisher T-handle will illuminate, and the flight crew is trained to pull the illuminated handle full aft. In doing so, a mechanical cam on the T-handle lifts the trigger on the ECL out of a wedge-shaped stop, allowing the handle to move aft, which reduces the fuel flow to the affected engine. Eventually, the fuel flow to the engine is shut off as the fire extinguisher T-handle continues aft and pushes the fuel selector valve to the OFF position. The fire extinguisher system is then automatically armed and ready for the pilots to release the fire extinguishing agent into the appropriate engine compartment. 

The S-76C++ engine control quadrant is physically similar to previous models of the S-76 series (S-76A, S-76B, S-76C, S-76C+), in that the ECLs are located in the overhead engine control quadrant. The S-76A, S-76B, and S-76C use push-pull cables to manually control the engine throttle positions on each engine’s hydro-mechanical units. The S-76C+ uses an electronic engine control design with a manual push-pull cable reversionary mode. The ECLs of the S-76C++ series are based on a dual-channel allelectronic engine control design, in that the ECLs are attached to potentiometers that transmit ECL position electronically to each respective electronic engine control unit.

Windscreens

In 2007, about 2 years prior to the accident, PHI removed the original, factory-installed laminated glass windshields in N748P and installed lighter-weight cast acrylic windshields manufactured by Aeronautical Accessories Incorporated (AAI). The Federal Aviation Administration approved use of the replacement windshields under Supplemental Type Certificate SR01340AT, issued to AAI on April 16, 1997. The FAA also issued Parts Manufacturer Approval to AAI on August 3, 1998, for manufacturing of the replacement windshields. The helicopter’s windshields were replaced again in 2008, about 1 year before the accident, due to cracking at the mounting holes. 

Low Rotor Speed Warning Systems

The S-76C++ helicopter's integrated instrument display system (IIDS) provides the flight crew with engine and main rotor system performance information. Three IIDS screens are mounted in the instrument panel; one in front of the captain, one in front of the co-pilot, and one in the center of the instrument panel (the main rotor [Nr] information is only displayed on the pilot's and copilot's IIDS.) The Nr data is provided to the flight crew by a broad colorbar on the right side of the IIDS. The IIDS Nr colorbar is green when the helicopter's Nr is between 106 and 108 percent, yellow when the Nr is between 91 and 105 percent, and red when Nr is 90 percent and below, warning the flight crew of a critical, unsafe flight conditions requiring immediate action. The helicopter was not equipped with an audible alarm or a master warning light to alert the flight crew of a low Nr condition, nor was one required by 14 CFR Part 29.The IIDS also provides a visual caution legend such as "1 out of fly" to the crew any time an engine speed selector is out of the FLY detent with the weight off wheels. 

PERSONNEL INFORMATION

A review of the accident flight crew's training records indicated that both pilots had accomplished all required training and had completed emergency initial and recurrent training in ground school and in the Sikorsky S-76C++ simulator.

The 63-year-old captain had approximately 15,373 flight hours when the accident occurred, of which 14,673 were in rotorcraft; 8,549 as pilot-in-command; and 5,423 in the S-76. He held an airline transport pilot certificate for helicopters, and a commercial pilot certificate for fixed-wing airplanes. He also held an instrument rating for helicopters and airplanes. His last FAA flight proficiency check was on October 27, 2008. His first class FAA medical was issued on August 11, 2008, with a restriction that he wear corrective lenses while flying. He had flown 219 hours in helicopters in the preceding 90 days.

The 46-year-old co-pilot had approximately 5,524 flight hours, of which 1,290 were in helicopters, with 962 in the S-76. He held an airline transport pilot certificate for helicopters and a commercial certificate for fixed-wing airplanes. He also had a flight instructor certificate valid for giving instruction in single/multi-engine airplanes and helicopters. His instrument rating was valid for both airplanes and helicopters. His last FAA flight proficiency check was on April 25, 2008, and his last FAA first class medical was issued on February 26, 2008, with a restriction that he wear corrective lenses while flying. He had flown 205 hours in helicopters during the preceding 90 days. 

METEOROLOGICAL INFORMATION

The weather conditions reported at Amelia, Louisiana, at 1430 CST were scattered cloud layers at 1,500 feet and 3,500 feet; a broken cloud layer at 10,000 feet; visibility 10 miles; winds at 160 degrees at 6 knots; temperature of 24 degrees Celsius; and a dew point of 19 degrees Celsius.

WRECKAGE AND IMPACT INFORMATION

The majority of the major components were accounted for and recovered from the accident scene. Examination of the accident site indicated that the helicopter impacted on its left side on an approximate heading of 120 degrees. Extensive deformation on the left side of the helicopter was noted and exhibited signatures consistent with hydrodynamic and soft terrain impact. The largest portion of the helicopter came to rest in a marsh area and consisted primarily of the upper deck from above the cockpit area to the aft engine compartment. The corresponding lower fuselage section was adjacent to the upper deck. The two sections remained attached by wiring harnesses only. 

The tail boom was separated from the fuselage at the forward attach point (fuselage station 300) and exhibited extensive impact damage. The vertical pylon was partially separated from the tail boom and was deformed to the right side of the aircraft. The left-hand horizontal stabilizer was separated from the tail boom and the right stabilizer was attached but damaged. 

The number 2, 3, and 4 tail rotor driveshaft segments, along with their respective hanger bearings, appeared to have been pulled forward during the impact sequence and exhibited minimal rotational scoring/damage. The coupling disk packs were securely attached to each associated coupling and exhibited minimal distortion. The number 4 driveshaft was observed separated approximately six inches forward of the intermediate gearbox attach point. The number 5 driveshaft was securely attached to the intermediate gearbox and the tail rotor gearbox.

The tail rotor system exhibited extensive damage. The tail rotor gearbox output housing and gear separated from the gearbox center housing. The gear teeth appeared normal and did not exhibit any pre-impact anomaly. The blue, yellow, and black tail rotor blades exhibited minimal rotational impact damage. The black and yellow tail rotor blades had fractured just outboard of their respective hub retention plates. The blue blade was securely attached to the hub and the red blade was observed broken with “broom straw” damage approximately seven inches from the root end of the blade. The remaining section of the tail rotor gearbox housing was observed securely attached to the upper vertical pylon. The tail gearbox magnetic chip plug was removed and observed free of ferrous debris.

The four main transmission mounts were securely attached to the deck structure and did not exhibit any pre-impact damage. The transmission rotated freely. Continuity from the two input shafts to the main rotor head and tail takeoff was established. The magnetic chip plugs were removed and observed clean with oil still remaining inside of them. The transmission fluid level was observed to be in its normal state. 

The main rotor blade system exhibited impact damage consistent with low-speed rotation. The yellow and black main rotor blades were observed attached to the hub and predominately intact with some impact damage. The red blade had separated approximately 27 inches from the root end of the blade, and the remaining portion of the blade was recovered. The blue blade exhibited two separations, one at approximately 40 inches from the root and another about 12 feet from the root. With the exception of a small tip portion, approximately 8 feet of the blue blade was not recovered. 

The main rotor hub was observed securely attached to the main rotor shaft and exhibited substantial impact damage. The drive links and swashplate were intact and did not exhibit pre-impact damage. The four pitch control rods were observed securely attached and undamaged. The three main rotor servo actuators and associated hydraulic lines were securely attached and did not exhibit any pre-impact anomalies. The three primary servo actuators all displayed a part number of 76650-09805-111 and had experienced a recorded 1,104 hours of operations since overhaul, with an approximate total time of 3,400 hours.

The engines were mounted in the airframe engine compartment. The No. 1 (left) engine exhibited significant deformation of the left side and both engines were deformed from their respective mounts in a left-to-right direction. There was no evidence of fire, fuel leaks, or oil leaks.

The No. 1 and No. 2 axial compressor wheels rotated easily. There was evidence of some ingestion of mud and debris. The axial compressor wheel and blades were intact with some tip bending. The power turbine wheel rotated easily. The power turbine wheel and blades were intact and there were signs of blade rub on the bottom of the housing, consistent with a hard landing or impact. The short shafts were observed pulled out of the engine output coupling for both engines but securely attached to the transmission inputs. The flexible couplings and triangular flange exhibited minimal deformation.

Complete control continuity could not be established from the cockpit aft to the mixing unit due to impact damage and crush deformation of the airframe. Control continuity was established from the mixing unit to the flight control servos to the main rotor blades. No pre-impact anomalies were observed. All hydraulic fluid reservoirs were found to be full of hydraulic fluid with no evidence of leakage noted. 

FLIGHT RECORDER INFORMATION

Data from the Penny and Giles combination FDR and CVR were analyzed at the NTSB's Recorders Laboratory with download assistance from the manufacturer's facility in England and the US Army Safety Center in Fort Rucker, Alabama. Both recorders captured the entire accident flight. 

The CVR recorded the sound of a bang and a loud air noise followed by a substantial increase in the background noise level that was recorded on both intercom microphones and the cockpit area microphone. Less than a second after the bang and loud air noise, the CVR captured the sound of decreasing rotor and engine rpm. Seventeen seconds later, the recording ended. 

The non-volatile memory (NVM) from the engines' digital Engine Electronic Control Units (EECUs) was successfully downloaded and no faults were recorded. 

TESTS AND RESEARCH

Engine Examinations

On January 22, 2009, the No. 2 engine, a Turbomeca Arriel 2S2, SN 21010, was disassembled under NTSB supervision. Other than impact damage, no anomalies were noted. The engine’s hydromechanical unit (HMU) was removed and examined. It was determined that it could be run on a test bench. Prior to running the HMU, the position of the resolver and the manual microswitch were determined. The resolver was at 59.33 degrees, which equates to a fuel flow of about 137 pounds per hour and an N1 of about 86.8 percent. The manual microswitch was found to be in the open or neutral position, indicating that the HMU was in the automatic mode. The HMU was then run on the test bench with no significant out-of-limits noted; however, there was a fuel leak observed that appeared to be from the varilip seal. As fuel pressure increased, the fuel leak decreased. 

On January 23, 2009, the No. 1 engine, a Turbomeca Arriel 2S2, SN 21022, was disassembled. Other than impact damage, no anomalies were noted. The engine’s HMU was removed and examined. Impact damage to the unit precluded it from being run on the test bench. The position of the resolver and the manual microswitch were determined. The resolver was at 28.38 degrees, which equates to a fuel flow of about 250 pounds per hour and an N1 of about 98.0 percent. The manual microswitch was found to be in the open or neutral position, indicating that the HMU was in the automatic mode. 

Flight Computer Memory Download and Testing

The FZ-706 Digital Flight Computer, P/N 7015480-903, S/N 05061626, was connected to test equipment and the error codes were successfully recovered. The most recent error codes included Error 20 (Actuator Reference Fail) and Error 18 (LVC Fail – Line Voltage Compensation). These codes are produced in pairs and occur when the avionics DC supply voltage is activated prior to turning on AC power (normal occurrence). The unit was then subjected to the Final Acceptance Test Procedure (ATP) and passed all ATP tests.

The FZ-706 Digital Flight Computer, P/N 7015480-903, S/N 05051607, was connected to test equipment and the error codes were successfully recovered. The most recent error codes included Error 18 (LVC Fail – Line Voltage Compensation) and Error 30 (Yaw Trim Fail). There were no date/time entries associated with the error codes; therefore, no conclusion could be made as to when they were generated. The unit was then subjected to the Final ATP and passed all ATP tests.

Testing of Bird Strike Remnants

A bird specialist with the U.S. Department of Agriculture (USDA) examined the helicopter for evidence of a bird strike. Initial visual examinations did not detect conspicuous evidence of a bird strike. Swabs were then taken from the pilot-side windscreen, from an area of the windscreen that exhibited concentric ring fractures. Similar concentric rings were visible in the gel coat of the fuselage area just above the windscreen. The sample was sent to the Smithsonian Institution Feather Identification Lab for identification. Results from DNA testing on that sample showed that microscopic remains of a hawk variety bird were present. 

Additional swabs for bird remains were taken from the fuselage, empennage, various inlets, including the engines, and from the main rotor hub and main rotor blades. Examination revealed the presence of small parts of feathers under a right side windscreen seal, and in the folds of the right engine’s inlet air filter. 

Material consistent with bird remains was also discovered on the right windshield adjacent to the upper windshield frame structure. Additional samples were also found in the engine air filters. The Smithsonian Institution’s feather identification laboratory in Washington, D.C., identified all of the remains as belonging to a female red-tailed hawk, which has an average weight of 2.4 pounds.

Main Rotor Actuator Examinations

The systems group chairman directed computed tomography scanning of the main rotor actuators on January 9-11, 2009, and the entire systems group convened on January 26 and 27, 2009, in Santa Clarita, California, at the servo manufacturer’s facility to examine and document the main rotor servo actuators. The three main rotor servo actuators were subjected to X-ray computed tomography (CT) and digital radiography scanning to document the internal condition of the components. The scanning was conducted from January 9- 11, 2009. For the CT scans, each component was imaged by using approximately 300 to 500 slices with a resulting image file size of slightly over 2 megabytes for each slice. The slices were each 0.5 mm thick with a cross sectional pixel dimension within each slice of approximately 0.27 mm x 0.27 mm. The total number of slices collected was 1312, and the total scanning time was 59 hours. For the digital radiograph (DR) images, the actuators were subjected to a process similar to a conventional X-ray. The image was gathered using the same detector used for the CT scans, but the actuator remained stationary and the images contain elements superimposed on each other. 

Each data set was evaluated using the VGStudioMax software package to create a three-dimensional reconstructed image of the component. At some points, the actuator was too thick for the X-rays to penetrate with a high enough frequency to generate a good image. For each of the actuators, no evidence of broken parts, clogged hydraulic passages, or internal debris was found.

All three main rotor servo actuators were visually examined and no significant faults were found. All lockwire and cotter pins were in place. After the units were examined, they were all cleaned with a low-pressure solvent wash prior to being loaded into the functional test bench. 

Prior to functional testing, hydraulic samples were taken by capturing the fluid in the servos as it came out of the return port. The samples were collected for both actuator stages for each actuator. Patch testing was conducted on all of the fluid samples and the results showed no contamination of the fluid. 

The aft servo test results were all within the listed test tolerances. The lateral servo test results were all within the listed test tolerances except for the interstage position error test and the input force level (both systems pressurized, retract direction) test. The forward servo test results were all within the listed test tolerances except for the system 1 low side pressure switch test results.

The units were all disassembled and the removed components were examined. All of the plasma coatings were intact on the piston heads and no cracks or missing material was noted. There were some areas on the plasma coating that were shiny and appeared to be consistent with wear polishing. These areas were on the outboard side of the system 1 piston and the inboard side of the system 2 piston. These shiny areas were most pronounced on the aft servo pistons, less pronounced on the forward servo piston heads, and not present on the lateral servo piston heads. The balance tubes were removed and those seals were also intact and did not appear to be worn.

ADDITIONAL INFORMATION

Helicopter Windshield Requirements

Title 14 Code of Federal Regulations (CFR) 29.631 includes general requirements for bird strike resistance for transport-category helicopters and states that, at a minimum, the helicopter should be capable of safe landing after impact with a 2.2-pound bird at a specified velocity. Title 14 CFR Part 27 contains no bird strike requirements for normal-category helicopters, even though they are frequently used for commercial operations such as emergency medical services and sightseeing flights. In addition, current FAA requirements for helicopter windshields in 14 CFR 27.775 and 29.775 do not mention bird strike resistance and simply indicate that "windshields and windows must be made of material that will not break into dangerous fragments." No definition is provided for the term "dangerous fragments," nor is there guidance as to how a manufacturer would show compliance with the requirement.

In contrast, performance-based requirements for airplane windshields specifically address bird strikes. According to 14 CFR 25.775, windshields for transport-category airplanes "must withstand, without penetration, the impact of a four-pound bird" at a specified velocity and also must be designed to minimize the danger to pilots from flying windshield fragments. According to 14 CFR 23.775, windshields for commuter-category airplanes "must withstand, without penetration, the impact of a two-pound bird" at a specified velocity. 

A 2006 study by Dolbeer, Wright, and Cleary, ("Bird Strikes to Civil Helicopters in the United States, 1990-2005," 8th Annual Meeting of Bird Strike Committee – USA, August 2006) which summarized the data for bird strikes on helicopters in the FAA’s National Wildlife Strike Database, concluded that (1) helicopters were significantly more likely to be damaged by bird strikes than airplanes, (2) windshields on helicopters were more frequently struck and damaged than windshields on airplanes, and (3) helicopter bird strikes were also more likely to lead to injuries to crew or passengers. The authors concluded that the "high percentage of windshields damaged for helicopters, combined with the disproportionate number of human injuries, indicates that improvements are needed in windshield design and strength for these aircraft." 

Replacement of Sikorsky S-76 Windshields

All S-76C++ model helicopters are delivered with laminated glass heated windshields that are 0.30-inch thick with a 0.12-inch thermally tempered glass ply outboard, a 0.12-inch chemically tempered glass ply inboard, and 0.06-inch polyvinyl butyral interlayer between them. In 1985, Sikorsky tested the laminated glass heated windshield for impact resistance for compliance with a European airworthiness requirement. During the tests, 26-inch square panels were impacted with 2-pound birds at a speed of 160 knots at an angle of 35 degrees. In some tests, the exterior glass layer cracked after the impact, but the birds did not penetrate the windshield panels. 

In the early 1980's, PHI had delamination issues with the original equipment manufacturer (OEM) glass laminated windshields. In 1984, a PHI customer-owned S-76A, which PHI operated, was purchased with monolithic cast acrylic windshields. At that time PHI became aware that replacement monolithic cast acrylic windshields were available. In the following years (mid 1980's to 1990's), PHI began replacing glass laminated windshields on most of its S-76 fleet. Eventually, all newly purchased PHI helicopters were equipped with monolithic cast acrylic windshields manufactured by AAI. These windshields were manufactured under the AAI PMA and STC SR01340AT. PHI also concurrently removed the main gearbox-mounted AC generator that provides power for the windshield heaters. The cast acrylic windshields are not equipped with heating elements, and thus do not require the AC generator to be installed.

At the time of the accident in January 2009, PHI had a fleet of 46 S-76's, all of which were equipped with monolithic cast acrylic windshields. As of September 11, 2009, PHI still had a fleet of 46 S-76's, 32 of which had been re-fitted with OEM-type glass laminated windshields. This left a fleet of 14 S-76A++ (older aircraft) which still had monolithic cast acrylic windshields.

Other Sikorsky S-76 helicopters in PHI’s fleet also had their original windshields replaced with the cast acrylic windshields. AAI did not perform any bird impact testing on the cast acrylic windshields supplied for the S-76. The NTSB is aware of an additional bird strike incident on April 19, 2006, involving an S-76A++ helicopter operated by PHI that was equipped with a cast acrylic windshield identical to the one in the accident helicopter. The examination revealed a near-circular hole with radiating cracks near the top center of the right windshield. The bird penetrated the windshield and pushed the right throttle to idle. The trapped remains of the bird prevented the right throttle from being re-engaged, but the pilot was able to land the helicopter safely. 

S-76A Certification Basis

The original S-76A, Transport Helicopter Category B, was certified on November 21, 1978 (FAA Type Certificate number H1NE). The certification basis for the S-76A and all subsequent models of this series (Sikorsky S-76A, S-76B and S-76C helicopters) is 14 CFR Part 29 amendments 29-1 through 29-11. Additional regulations were complied with to higher amendment levels, but they are unrelated to the helicopter structure. 

Sikorsky Windshield & Windscreen Certification Basis

According to Part 29, AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT, Subpart D--Design and Construction Personnel and Cargo Accommodations Section 29.775, Windshields and windows: "Nonsplintering safety glass must be used in glass windshields and windows."

S-76C Certification Basis

The S-76C was certified in March of 1991 and was not required to meet the requirements in place at the time the Sikorsky Aircraft Corporation applied to add the S-76C model helicopter to the existing S-76 type certificate. The S-76C Transport Helicopter, Categories A and B, were certified on March 15, 1991, and April 12, 1991, respectively. Although the S- 76C was certified in 1991, in accordance with their normal practices the FAA allowed Sikorsky to use the certification requirements in place at the time of the initial S-76A dated 1978. The practice of applying the requirements that existed at the date of the original certification is known as "grandfathering." The requirements in place for windshields and windscreens in 1991 were:

Section 29.775 - Windshield and windows:

"Windshields and windows must be made of material that will not break into dangerous fragments" (Amendment 29-31, Effective October 22, 1990).

S76A Windshield Testing

Sikorsky Aircraft intended to market the S-76A to the North Sea offshore oil operators. As the FAA had not yet established any bird strike criteria, Sikorsky and the windshield supplier qualified the glass-plastic laminate and later glass-glass laminate windscreens to the British Civil Aviation Requirements (BCAR), which required the windshield to resist penetration of a two pound bird at 160 knots. Tests were conducted in 1978 using the glass-plastic laminate (Canadian National Research Council Report LTR-ST.993) and in 1982 using the 
glass-glass laminate (PPG Report QSR-129910; Page 10-11). Both windshield designs passed the BCAR certification tests at impact speeds of 160-173 knots. Thus in 1978, the Sikorsky-installed windshields had already exceeded the FAA’s requirements that would have been imposed on a new aircraft at the time of the S-76C certification in 1991.

S-76B Windshield Testing

In order to comply with the British Civil Aviation Requirements (BCAR) during the S-76B certifications in October 1985 (Transport Helicopter Category B) and February 1987 (Transport Helicopter Category A), six windshields were tested in August 1985. The six test specimens were fabricated to a standard 26 x 26 inch bolted design and impacted with two-pound birds at velocities slightly above the 160-knot requirement. The first three windows were shot at ambient room temperatures of 70 +/- 5 degrees F, the fourth and fifth panels 32 +/- 5 degrees F and the last panel 20 +/- 5 degrees F.

For the first impact test the speed was 163.9 knots at a temperature of 73 degrees F. The panel survived the impact without any broken plies. Due to the undamaged condition the panel was tested again at a speed of 163.5 knots and a temperature of 71 degrees F. The panel passed the impact test without penetration although the outboard glass ply broke while the inboard glass ply remained intact. The third impact test was conducted at room temperature at a speed of 165.1 knots. The panel passed without penetration although the outboard glass ply was broken. The inboard ply remained intact after the impact. The two required 30 degrees F shots were conducted on the same panel, as the first shot did not cause any damage to the panel. The initial cold shot was conducted between 30degreed F and 32 degrees F at a speed of 161.2 knots. The second cold shot was conducted between 30 degrees F and 31 degrees F at a speed of 163.3 knots. The outboard glass ply was broken and the inboard glass ply remained undamaged and intact.

The fifth test was conducted at a temperature between 20 degrees F and 21 degrees F at a speed of 165.0 knots. The outboard glass ply was broken and the inboard glass ply remained intact. An additional test was conducted on one of the panels with a broken outboard ply. The test was conducted at 78 degrees F at a speed of 158.6 knots; no additional damage was noted. The panel was tested a third time at a speed of 161.8 knots with a two-pound gel package; again no damage to the inboard glass ply was noted. The final test did, however, cause the maximum stress and strain levels on the inboard glass ply.

All of the specimens tested met the prescribed test conditions of no penetration of a 2.0-pound bird at velocities slightly above 160 knots for the S-76B.

Supplemental Type Certificate Certification Basis/Cast Acrylic Windshield Information

The windshields in the accident helicopter were monolithic cast acrylic replacement windshields supplied by a third-party manufacturer, AAI. Installation and use of the replacement windshields was approved by the FAA under Supplemental Type Certificate (STC) SR01340AT, which was issued to AAI on April 16, 1997. The FAA also issued a Parts Manufacturer Approval (PMA) to AAI on August 3, 1998, for the manufacture of the replacement windshields.

AAI applied for the STC on November 27, 1996, and received approval on April 16, 1997. At that time, they were allowed to make parts only for their own use in their own aircraft. They would not be allowed to sell any windshields to other persons until after receiving their PMA approval.

As a holder of a PMA, AAI was authorized to manufacture the parts identified and to sell to any persons wishing to install the parts into a type certificated product per 14 CFR 21.303. The FAA Form 8110-3, Statement of Compliance with Federal Aviation Regulations, indicated that the FAA approval basis for the test and analysis were per 14 CFR 21.303(c)(4). The following is an excerpt from the FAA standards:

Part 21 CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS; Subpart K--Approval of Materials, Parts, Processes, and Appliances; Section 21.303; Replacement and modification parts.
(c) An application for a Parts Manufacturer Approval is made to the [Manager of the Aircraft Certification Office for the geographic area] in which the manufacturing facility is located and must include the following:
(4) Test reports and computations necessary to show that the design of the part meets the airworthiness requirements of the Federal Aviation Regulations applicable to the product on which the part is to be installed, unless the applicant shows that the design of the part is identical to the design of a part that is covered under a type certificate. If the design of the part was obtained by a licensing agreement, evidence of that agreement must be furnished.
(h) Each holder of a Parts Manufacturer Approval shall establish and maintain a fabrication inspection system that ensures that each completed part conforms to its design data and is safe for installation on applicable type certificated products. The system shall include the following:
(6) Current design drawings must be readily available to manufacturing and inspection personnel, and used when necessary. (Amendment 21-67, Effective October 25, 1989).

FAA Certification Requirements for Transport Category Rotorcraft

The following are the standards cited in 14 CFR Part 29, AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT; Subpart D--Design and Construction; General; Section 29.631; “Bird Strike”:

"The rotorcraft must be designed to ensure capability of continued safe flight and landing (for Category A) or safe landing (for Category B) after impact with a 2.2-lb (1.0 kg) bird when the velocity of the rotorcraft (relative to the bird along the flight path of the rotorcraft) is equal to VNE or VH (whichever is the lesser) at altitudes up to 8,000 feet. Compliance must be shown by tests or by analysis based on tests carried out on sufficiently representative structures of similar design.(Amendment 29-40, Effective 8/8/96)"

A review of the STC data package provided by the FAA revealed no documentation to indicate that AAI complied with the intent of 14 CFR 29.775 as specified in either section 2.1 or 2.2, or compliance with 14 CFR 29.631, as specified in section 3.1. As with a Type Certificate (TC), the applicable regulations for an STC are based on the date of application or an earlier date as agreed to by the Administrator, known as "grandfathering." The AAI STC was applied for on November 27, 1996. The FAA Form 8110-3 only indicates that the windshields are compliant with 14 CFR 21.303(h)(6). The FAA Form 8110-3 should also have made reference to 14 CFR 29.775 per section 2.1, had they been allowed to do so by the FAA, “grandfathered," or based upon the STC application date 14 CFR 29.631 as defined in section 3.1 and 14 CFR 29.775 as defined in section 2.2. In addition, compliance with section 14 CFR 29.303(C)(4), tests and analysis, as defined above was indicated as the FAA approval basis for AAI’s PMA. No records of the tests and analysis have been located by the NTSB or provided to the NTSB by either the FAA or the STC holder, AAI.

Manufacturer Safety Alert Regarding S-76 Windscreens

On May 19, 2009, Sikorsky Aircraft Corporation issued a safety advisory (SSA-76-09-002) to all S-76 operators regarding the reduced safety factor of acrylic windshields (both cast and stretched) as compared to laminated glass windshields. According to the advisory, the S-76 laminated glass windshield demonstrated more tolerance to penetrating damage resulting from in-flight impacts (such as bird strikes) compared to acrylic windshields. Sikorsky expressed concern that the presence of a hole through the windshield, whether created directly by object penetration or indirectly through crack intersections, may cause additional damage to the helicopter, cause disorientation or injury to the flight crew, increase pilot workload, and create additional crew coordination challenges. 

U.S. Army Windshield Tests

The U.S. Army generally no longer uses cast acrylic windshields. Cast acrylic windshields may still be used in certain applications where it is necessary for an ejection seat to be able to easily break through the canopy. Two U.S. Army reports compared the impact resistance of windshields constructed of cast acrylic and different materials. One U.S. Army study ("UH-1 Ballistic and Bird Impact Test Study," Report AMMRC CTR 75-7, April 1975) reported on bird strike tests of Bell UH-1 helicopter windshields made of different materials. The UH-1 windshield materials tested included cast acrylic, polycarbonate, and a composite constructed of a layer of polycarbonate bonded to a layer of chemically tempered glass. The report concluded, in part, that the polycarbonate and the polycarbonate bonded to glass both offer far greater bird strike protection than a standard cast acrylic windshield. The report further indicated that a cast acrylic windshield at a cruising speed of 90 knots is incapable of defeating a bird strike, and that the Plexiglas breaks into large fragments that could cause serious injury to the flight crew. 

Another U.S. Army report ("Design, Test and Acceptance Criteria for Helicopter Transparent Enclosures," Report USARTL-TR-78-26, 1978) documented a study of the low-energy impact response of a number of different windshield materials. The materials tested included a tempered-glass laminate, a laminate of glass and stretched acrylic, monolithic stretched acrylic, monolithic cast acrylic, and monolithic polycarbonate. The report concluded that the cast acrylic needed to be three times as thick as the stretched acrylic or the polycarbonate to provide a similar level of protection against impact.

Hazards of Bird Strikes on Aircraft

Following its investigation of a March 4, 2008, crash of a Cessna 500 airplane, N113SH, that had a bird strike in Oklahoma City, Oklahoma, (NTSB Aircraft Accident Report NTSB/AAR-09/05) the NTSB issued Safety Recommendation A-09-75 on September 29, 2009, asking the FAA to "require all 14 Code of Federal Regulations (CFR) Part 139 airports and 14 CFR Part 121, Part 135, and Part 91 Subpart K aircraft operators to report all wildlife strikes, including, if possible, species identification, to the National Wildlife Strike Database." 

Low Rotor Speed Warning Systems

Some single- and twin-engine helicopter models are equipped with an audible alarm and/or warning light to alert the flight crew of a low Nr condition. For instance, Bell Helicopter twin-engine models 212, 412, and 430 are equipped with an audible alarm and a warning light to notify the flight crew if the rotor rpm starts decaying and falls below the specified threshold. On July 9, 2009, the FAA issued a notice of proposed rulemaking (NPRM), titled "Flightcrew Alerting," that proposed revisions to 14 CFR 25.1322 regarding definitions, prioritization, color requirements, and performance for flight crew alerting for transport-category airplanes. The NPRM proposes to incorporate redundant sensory cuing (such as aural and visual) into alerts for conditions requiring immediate flight crew awareness. The revisions are based on human factors principles, with the intent to ensure that alerting systems in newly certificated aircraft facilitate flight crew performance. In a letter, the NTSB indicated that it supported the proposed revisions and acknowledged the significant advances in technology and alerting capabilities of aircraft. In addition, the NTSB recognized the importance of providing salient, recognizable cues through at least two different sensory systems by a combination of aural, visual, or tactile indications. 

Based on the main rotor speed decay information provided by Sikorsky, the flight crew of N748P had about 6 seconds or less to react to the decaying Nr condition. 

When the S-76 was certificated in 1978, 14 CFR 29.33 did not require an audible alarm or warning system for low Nr conditions. The subsequent revision to 14 CFR 29.33 in 1978 required a low Nr warning system in single-engine helicopters and in multi-engine helicopters that did not have a device that automatically increases power on the operating engine if one engine fails. Since the S-76 has a system that automatically increases power on the operating engine in order to maintain Nr, the accident helicopter would not have required an alarm or warning system even if the latest revision did apply. The NTSB is aware that both the Sikorsky S-92A and the S-76D (which is currently undergoing certification) have an audible low Nr warning, even though these aircraft are equipped with a system that automatically increases power in the working engine. Requirements for normal-category helicopters in 14 CFR 27.33 are similar. 

Flight Crew Training for Simultaneous Dual-Engine Failure

A review of the accident flight crew's training records indicated that both pilots had fulfilled all training requirements and had completed Sikorsky S-76C++ emergency initial and recurrent training in ground school and in the simulator. The emergency procedures section of the Sikorsky S-76 flight manual describes the dual-engine failure procedure while hovering, during takeoff and initial climb, and during cruise. Upon dual-engine failure, the helicopter will yaw to the left due to the reduction in torque as engine power decreases. An immediate collective pitch reduction would be required to maintain Nr within safe limits. In most instances, if dual-engine failure occurs a safe autorotation landing could be made.

According to PHI, prior to the January 4, 2009, accident, line oriented flight training (LOFT) for dual-engine failure was conducted in both ground school and in a simulator for visual and instrument flight rules conditions. Training was conducted so that one engine failed at a time, ultimately resulting in autorotation. Training for simultaneous sudden failure of both engines was part of initial training but was not part of annual recurrent training. Since the accident PHI modified LOFT to include sudden simultaneous dual-engine failure training both on the ground and in the simulator during initial and annual recurrent training.

A review of NTSB data indicates that from 1982 to present the NTSB has investigated 52 accidents involving loss of engine power in dual-engine helicopters, 23 of which resulted in substantial damage. In general, the causes of the dual-engine loss of power were due to fuel exhaustion, fuel contamination, and operational errors, among other factors. 

Materials Laboratory Examination of Windscreen Components

The parts examined from the wreckage at the NTSB’s Materials Laboratory included pieces recovered from the left and right windshields and pieces from the canopy structure that supported the windshields. The canopy structure included two pieces of the canopy and sill from above the windshields, pieces of the left and right doorpost structures that supported the outboard edges of the windshields, the center post that supported the inboard edges of both windshields, and pieces from the center of the nose and instrument panel that supported the bottom forward edges of the windshields and where the bottom of the center post was attached. 

No defects in the materials, manufacturing, or construction were observed. There was no indication of any pre-existing damage that contributed to the accident.

The left and right windshields were mirror images of each other. The windshield material was specified to be aircraft-grade cell cast acrylic sheet per military specification L-P-391, Item A, Type 1, Grade C, with a thickness of 0.312 inch. Markings indicate that the left windshield was manufactured in January, 2008, and the right windshield was manufactured in February, 2008.

The top edges of the windshields were approximately 30 inches long. The inboard edges were approximately 43 inches long. The bottom forward edges were approximately 34 inches long. The outboard bottom edges were approximately 17 inches long and the aft outboard edges were approximately 42 inches long.

Each windshield was attached to the canopy structure by 75 screws, which threaded into nutplates that were riveted to the canopy. Thickness measurements from random locations on the right windshield ranged from 0.307 inch to 0.324 inch. Thickness measurements from random locations on the left windshield ranged from 0.282 inch to 0.290 inch. 

The helicopter impacted the ground along its lower left side and separated along a generally horizontal plane into an upper part and a lower part. The upper part remained oriented along the line of flight, but the lower part came to rest with the nose directed to the left of the line of flight. 

In the area of the windshields, the upper canopy structure was separated from the lower canopy structure by fractures at the top of each doorpost and at the base of the horizontal arm of each wishbone, along with fractures at the top and bottom of the center post. There were no fractures through the frame of either windshield along the doorpost structures themselves. The center post was also substantially intact and remained connected to the upper canopy structure by electrical wires. 

On the right side, the doorpost was separated from the upper canopy by several fractures through the composite structure and by rivet pullout. Approximately 4 inches in from the outboard edge of the right windshield there was a vertical fracture through the lip supporting the windshield formed by the bonded canopy and sill pieces. 

Examination of the upper canopy revealed a puncture in the roof above the right windshield. A roughly rectangular area of the canopy was cut open to investigate the cause of the puncture, extending from 16 and 24 inches to the right of the centerline and from 1 to 4 inches above the edge of the windshield. No specific cause of the puncture was identified by visual examination. Swabs were also taken from this location for assessment of potential bird remains. 

In an area between 8 and 16 inches to the right of the centerline, the paint on the canopy above the top edge of the windshield exhibited a series of roughly horizontal parallel cracks. These cracks occupied an area that extended up approximately 6 inches from the edge of the windshield. In the area from 8 to 12 inches to the right of the centerline, and from 2 to 6 inches above the top edge of the windshield, the paint cracks were shorter and were continuous across the aft end of the fore-and-aft crack found at 8.5 inches to the right of the centerline. The most outboard of these cracks in the paint were found in an area not adjacent to any cracks in the underlying composite structure, whereas other areas of paint cracks were generally found to be adjacent to cracks or fractures in the underlying structure, within 1 inch or so.

The canopy and sill structures above the left windshield were fractured in two locations and these fractures were part of a system of fractures that separated the smaller left-side piece of the roof and sill structure from the rest of the canopy structure. On-scene photographs indicate that the two pieces of the upper canopy were still connected by electrical wiring.

The center post was separated from the upper canopy structure by fractures through the composite material accompanied by impact-related disbonding and delaminations. 

All of the fractures observed in the windshields were typical of brittle overstress, with fractures occurring on planes of maximum tension. Fracture features generally showed that the crack progressed more rapidly at one free surface than at the other, indicating fracture under tensile stresses resulting from bending, but some areas of fracture under nearly in-plane tension were also observed. Features on the fracture surfaces were used to determine crack propagation directions and the direction of bending. There were some cracks where the direction of bending changed from one part of the crack to another; in some cases this transition occurred smoothly and in other cases the crack arrested and then re-initiated under bending in the opposite direction. Primary or early cracks were identified by the continuity of the fracture surface and fracture features; secondary cracks either initiated or terminated at primary cracks. There was little symmetry between the fracture patterns in the two windshields. The left windshield was fractured into smaller pieces, consistent with the ground impact of the helicopter on its left side. 

The fractures in the windshields originated at multiple locations and consisted of several different systems of fractures. Although some small pre-existing cracks (on the order of 0.01 inch in length) were observed at the surfaces within the holes in the windshields for the attachment screws, the pattern of fractures in the windshields is inconsistent with fracture initiation resulting from a single pre-existing crack reaching a critical size. 

In general, the pieces of the windshields separated from the supporting frame by fractures that ran near or through the attachment screw holes. Not all of the pieces of either windshield were recovered, despite an extensive search of the bayou surface both around the point of impact as well as extending backward up the flight path. In general, the pieces that remained attached to the frame pieces after the accident were relatively small, typically extending 3 inches or less from the frame. The largest windshield fragments that remained attached to frame components after the accident were along the top edges and along the upper right side of the center post. The fractures in the right windshield along the top edge and on the center post generally formed a pattern of concentric curves and radial lines centered approximately 13 inches to the right of the centerline, at or above the top edge of the windshield. The center of this pattern coincided with the area of parallel cracks in the paint on canopy. Two of the secondary radial cracks in this area were centered on the crack in the canopy and sill structure 8.5 inches to the right of the centerline, just outboard of a vertical rib stiffening the bonded canopy and sill. 

Similar Bird Strike Incidents

A similar bird strike incident occurred on November 13, 1999, in Florida involving an S-76C+ helicopter, N276TH, operated by Palm Beach County. The bird did not penetrate the laminated glass windshield, but the impact force of the bird cracked the outer ply of the windshield and dislodged the fire extinguisher T-handles out of their detent; in this case, the ECLs did not move. 

The investigation also revealed an event in 2006 involving an S-76A++ helicopter windshield that was struck by a seagull. That helicopter was equipped with STC cast acrylic windshields identical to those on the helicopter involved in this accident. A photograph that was taken after the impact was examined by NTSB investigators. The examination revealed that the seagull penetrated the windshield and became lodged in the interior trim. Along the top edge of the windshield, fractures intersected the 2nd through 7th windshield mounting screw holes counting out from the center.
=================

NEW ORLEANS — The owner of a helicopter that crashed in Louisiana in 2009, killing a Pensacola man and seven others, is asking a federal court to sanction the aircraft’s manufacturer for allegedly hiding a damning internal report to conceal its liability.

In a court filing last Friday, PHI Inc. claims Sikorsky Aircraft Corp. withheld a report by one of its lead engineers because his analysis concluded Sikorsky’s faulty design caused its helicopter to crash.

PHI is seeking court-ordered monetary sanctions against Sikorsky, which faces a federal trial in November for a batch of consolidated lawsuits filed by relatives of crash victims.

Charles W. Nelson of Pensacola, a 2002 Escambia High School graduate, who worked as an electrician, was among workers being carried to a Shell Oil Co. platform in the Gulf of Mexico when it crashed near Morgan City, about 100 miles southwest of New Orleans.

The crash killed both pilots and six passengers and critically injured a lone survivor, Steve Yelton of Floresville, Texas. The helicopter was owned by PHI Inc.

The PHI pilots killed in the crash were: Thomas Ballenger, 63, of Eufaula, Ala.; and Vyarl Martin, 46, of Hurst, Texas. The passengers were: Nelson; Andrew Moricio and Ezequiel Cantu of Morgan City, La.; Randy Tarpley of Jonesville, La.; Allen Boudreaux Jr. of Amelia, La.; and Jorey A. Rivero of Bridge City, La.

PHI says it wouldn’t have paid as much last year to settle plaintiffs’ claims if it had seen Wonsub Kim’s report beforehand.

“Sikorsky hid the existence of Dr. Kim’s analysis because it was not helpful to Sikorsky. In fact, Dr. Kim’s analysis undermines Sikorsky’s entire defense,” PHI attorneys wrote.

Sikorsky spokesman Paul Jackson said in an email that the company “strongly” denies PHI’s allegation and is prepared to “defend against it strenuously.” Jackson wouldn’t comment beyond that statement.

Investigators concluded a bird struck the Sikorsky S-76 before it crashed on Jan. 4, 2009.

Investigators found the remains of a Red-tailed hawk on the remnants of the pilot’s side windshield. They also found bird feathers under a windscreen seal and in an engine.

PHI says Sikorsky has claimed PHI was responsible for the crash because it replaced the helicopter’s original glass windshield with a plastic one that allowed the bird to penetrate the windshield and disable its throttle controls.

PHI, however, says Kim’s November 2009 report shows Sikorsky’s faulty design of the helicopter’s canopy and throttle quadrant caused the crash. Kim concluded the windshield doesn’t fail when a bird strikes a Sikorsky S-76 exactly where it did in this case, PHI says.

“Instead, the bird strikes causes the canopy to fail ‘substantially,’ which causes the throttles to disengage, turning off the engines, and leading to the crash just seventeen seconds later,” PHI lawyers wrote. PHI claims Sikorsky intentionally kept Kim and his analysis hidden before it turned over his report on March 14, 2011. Yelton’s attorney, Paul Sterbcow, said they learned of the report’s existence while questioning a witness in February 2011. The National Transportation Safety Board did not travel to the scene of this accident. 

Aviation Accident Preliminary Report - National Transportation Safety Board: https://app.ntsb.gov/pdf 


Federal Aviation Administration / Flight Standards District Office; Baton Rouge, Louisiana

PHI Inc:   http://registry.faa.gov/N457PH


NTSB Identification: CEN17LA174 
Nonscheduled 14 CFR Part 135: Air Taxi & Commuter
Accident occurred Tuesday, May 02, 2017 in Boothville, LA
Aircraft: BELL 407, registration: N457PH
Injuries: 6 Uninjured.

This is preliminary information, subject to change, and may contain errors. Any errors in this report will be corrected when the final report has been completed. NTSB investigators may not have traveled in support of this investigation and used data provided by various sources to prepare this aircraft accident report.

On May 2, 2017, about 0635 central daylight time, a Bell 407 helicopter, N457PH, registered to and operated by PHI Helicopters, Inc., Lafayette, Louisiana, made a precautionary landing at Grand Bay receiving station in the Gulf of Mexico, near Boothville, Louisiana, after the pilot noticed a vibration in-flight. Visual meteorological conditions prevailed at the time of the accident.The non-scheduled domestic passenger flight was being conducted under the provisions of Title 14 CFR Part 135, and a company VFR flight plan had been filed and activated. The pilot and four passengers on board the helicopter were not injured.The cross-country flight originated from Boothville (LS08), Louisiana, at 0629, and was en route to Main Pass 311A in the Gulf of Mexico when the accident occurred. 

The pilot had noticed a vibration in-flight and landed the helicopter on the oil platform. As he was shutting down the engine, the vibration worsened and he completed the shutdown using the rotor brake. Post-accident inspection revealed a tip cap had separated from one of the tail rotor blades, and cracks were noted on the tail rotor gear box, mounting hardware, and tail boom, all considered to be substantial damage.




Aviation Accident Final Report - National Transportation Safety Board: https://app.ntsb.gov/pdf

The National Transportation Safety Board did not travel to the scene of this accident. 

Additional Participating Entities:
Federal Aviation Administration / Flight Standards District Office; Baton Rouge, Louisiana 
PHI Inc.; Lafayette, Louisiana 
Bell Helicopter; Hurst, Texas 

Aviation Accident Factual Report - National Transportation Safety Board:  https://app.ntsb.gov/pdf

Docket And Docket Items - National Transportation Safety Board:   https://dms.ntsb.gov/pubdms

PHI Inc:  http://registry.faa.gov/N501PH

NTSB Identification: CEN15LA265
Nonscheduled 14 CFR Part 135: Air Taxi & Commuter
Accident occurred Monday, June 08, 2015 in Pecan Island, LA
Probable Cause Approval Date: 03/23/2017
Aircraft: BELL 407, registration: N501PH
Injuries: 5 Uninjured.

NTSB investigators may not have traveled in support of this investigation and used data provided by various sources to prepare this aircraft accident report.

The operator reported that the helicopter air taxi flight was in cruise about 1,000 ft above ground level when the pilot felt an impact and a strong vibration. The pilot completed an instrument and functional control check and could not immediately identify any anomalies. The pilot stated that, as he slowed the helicopter for landing, he noticed a “heavy mechanical sound and strong vibration.” The vibration worsened, and the pilot began to have difficulty controlling the helicopter; he subsequently initiated an autorotation and deployed the helicopter’s floats. The helicopter touched down in a marshy area, and the pilot and passengers egressed. 

During the landing, the main rotor blades contacted the tail boom and one of the tail rotor blades, resulting in separation of the tail rotor gearbox (TRGB) support structure, which was subsequently located in the marsh. A postaccident examination and metallurgical analysis revealed that fatigue fractures on two of the four TRGB attachment studs likely existed before the accident flight. As the fatigue fractures grew larger through the first two attachment studs, their load-carrying capability lessened, and the additional load was transferred to the remaining attachment studs. The progressive failure of the fatigued TRGB attachment studs led to the vibrations felt by the pilot and, ultimately, the uncommanded right yaw and subsequent loss of tail rotor control. The reverse- bending, high-cycle fatigue fracture initiation mode observed on two of the TRGB studs suggests the fatigue fractures were a result of a loss of torque of the attachment stud nuts. The reason for the loss of torque could not be determined based on the available information. 

The National Transportation Safety Board determines the probable cause(s) of this accident as follows:
The fatigue fracture of the tail rotor gearbox attachment studs, which resulted in a loss of tail rotor control and a subsequent hard landing. 

On June 8, 2015, at 1432 central daylight time, a Bell 407 helicopter, N501PH, made an autorotation to the ground near Pecan Island, Louisiana. The airline transport rated pilot and four passengers were not injured. The helicopter sustained substantial damage. The helicopter was registered to and operated by PHI Inc., Lafayette, Louisiana, under the provisions of 14 Code of Federal Regulations Part 135 as an air taxi flight. Visual meteorological conditions prevailed at the time of the accident and a company flight plan was filed. The flight originated from Vermilion Block 256-E in the Gulf of Mexico about 1400 and was en route to Pecan Island.

The pilot and operator stated that the helicopter was in cruise flight about 1,000 ft above ground level when the pilot felt an impact and a strong vibration of the helicopter. The pilot completed an instrument and functional control check and could not immediately identify any anomalies. Soon after, the pilot initiated an airspeed and power reduction and noticed a heavy mechanical sound and strong vibration. The vibration worsened and the helicopter began a slow right turn so the pilot entered an autorotation. The pilot noticed that as the engine power was reduced further, the helicopter began to oscillate and he experienced difficulty maintaining directional control. With the floats inflated, the pilot made a hard forced landing into a marsh with tall grass. During the landing, the tail rotor gear box (TRGB) separated from the helicopter and was later located in the marsh. 

The helicopter was equipped with Outerlink, which recorded several of the helicopter's parameters, including GPS location, at 30 second intervals. The data was used to correlate the pilot's recollection of the anomalous vibrations, helicopter location, and timeline.

On June 24, 2015, representatives from the FAA, Bell Helicopter, PHI, and the NTSB convened at Bell Helicopter facilities in Hurst, Texas, to examine the recovered tail rotor head, tail rotor blades (TRB), TRGB, TRGB support structure, and remnants of the flexible coupling that was still attached to the TRGB input flange. The exterior of the gearbox exhibited light damage and dirt consistent with immersion in the marsh. The bottom surface of the four mounting feet exhibited evidence of corrosion from exposure to the brackish water. All four TRGB attachment studs were fractured. The four attachment stud locations were labeled "A", "B", "C", and "D" for the purpose of the examination. All gearbox-side attachment studs remained within the gearbox housing; the mating half from attachment stud A was recovered from the accident site. Three of the four TRGB attachment studs exhibited signatures of fatigue fracture. Attachment stud A exhibited reverse bending fatigue through the majority of its cross-section. Attachment stud B exhibited reverse bending fatigue through about 2/3 of its cross-section, and exhibited signatures of low cycle fatigue and overload through the remaining 1/3 of its cross-section. Attachment stud C exhibited signatures of low cycle fatigue and overload. Attachment stud D exhibited signatures of overload. The reverse bending fatigue found on attachment studs A and B were primarily in the lateral axis. Multiple tool ratchet marks were observed at the reverse bending fatigue origins. 

The recovered TRGB support structure exhibited multiple fractures consistent with overload. Impact damage consistent with main rotor blade contact was observed on the forward end of the structure. Mechanical damage and rotational scoring was observed near the forward end near the area where the TRGB input flange and flexible coupling are normally located; the damage exhibited a shiny, silver-colored appearance. The four TRGB mount spot faces exhibited evidence of fretting damage adjacent to the TRGB mount bores. Fractures were observed through the thickness of the mounting bores for attachment studs A and B; the fractures exhibited signatures consistent with overload. Additionally, the bores for attachment studs A and B exhibited thread impressions along the length of the bore and the entirety of the bore circumference. Lastly, the bores for attachment studs A and B, normally circular in shape, exhibited elongation in the same direction as the reverse bending fatigue observed on the studs. The bores for attachment studs C and D exhibited thread impressions along the length of the bore along the fore-aft axis. Evidence of sealant was observed on the TRGB mount spot faces. 

Remnant pieces of flexible coupling remained attached to the TRGB input flange (driveshaft adapter) at its two bolted locations. The fracture surfaces of the remnant flexible coupling exhibited signatures consistent with low cycle reverse bending fatigue. When disassembled, evidence of corrosion and corrosion byproducts were observed in the interior surfaces of the TRGB housing and the input quill duplex bearing assembly. The TRGB input flange could not be rotated manually. 

The two TRBs remained attached to the tail rotor hub; one was relatively intact with minor exterior damage and the other exhibited leading edge damage and the outboard section was separated near midspan. The damaged TRB exhibited signs of high-energy contact with a main rotor blade. 

On August 16, 2016, the TRGB mounting studs were re-examined for evidence of striations. The fracture surfaces of attachment studs A and B were examined under a scanning electron microscope (SEM) and revealed a significant amount of mechanical contact and corrosion damage. The damage precluded a striation count to estimate a crack growth rate for attachment stud A. On attachment stub B, a localized area of intact striations was observed between the mechanical contact damage, which revealed a localized fatigue striation spacing of about 0.000016 inches. 

On September 21, 2016, the damaged TRB was re-examined for evidence of proper bonding. Examination of the tip block bond line on the outboard portion revealed pieces of chopped fiberglass, which is a material used to manufacture the tip block. The tip block adhesive exhibited signatures consistent with a cohesive failure. The tip block adhesive showed evidence of adequate tip block adhesion to the blade skin. 

The operator's maintenance personnel performed a postaccident damage assessment and found a small hole in the aft bulkhead fairing. The hole was continuous to the aft baggage compartment where a brass threaded stud was found inside. The stud was identified as a tail rotor tip block weight.

About three weeks prior to the accident, on May 13 and 15, 2015, the tail rotor blades were repaired and inspected by an outside vendor. On May 21, 2015, the accident tail rotor assembly was reinstalled and balanced by the operator, at an aircraft total time of 16,624 hours, 13 flight hours prior to the accident.

Sikorsky S-76C++, Petroleum Helicopters Inc (PHI), N748P: Fatal accident occurred January 04, 2009 near Houma, Terrebonne Parish, Louisiana


Aviation Accident Final Report - National Transportation Safety Board: https://app.ntsb.gov/pdf

Additional Participating Entities:
Federal Aviation Administration District Office;  Baton Rouge, Louisiana 
Federal Aviation Administration; Washington, District of Columbia
Federal Aviation Administration;  Burlington, Maine
Federal Aviation Administration;  Fort Worth, Texas
National Transportation Safety Board; Washington, District of Columbia
Sikorsky; Stratford, Connecticut
Turbomeca USA; Grand Prairie, Texas
Petroleum Helicopters, Inc.; Lafayette, Louisiana 


Aviation Accident Data Summary -  National Transportation Safety Board:  https://app.ntsb.gov/pdf

NTSB Identification: CEN09MA117
Nonscheduled 14 CFR Part 135: Air Taxi & Commuter
Accident occurred Sunday, January 04, 2009 in Morgan City, LA
Probable Cause Approval Date: 11/24/2010
Aircraft: SIKORSKY S-76C, registration: N748P
Injuries: 8 Fatal, 1 Serious.

NTSB investigators traveled in suppor
t of this investigation and used data obtained from various sources to prepare this aircraft accident report.

A Sikorsky S-76C++ departed on an air taxi flight from PHI, Inc.’s heliport en route to an offshore oil platform with two pilots and seven passengers. Data from the helicopter’s flight data recorder indicated that the helicopter established level cruise flight at 850 feet mean sea level and 135 knots indicated air speed. About 7 minutes after departure, the cockpit voice recorder recorded a loud bang, followed by sounds consistent with rushing wind and a power reduction on both engines and a decay of main rotor revolutions per minute. Due to the sudden power loss, the helicopter departed controlled flight and descended rapidly into marshy terrain.

Examination of the wreckage revealed that both the left and right sections of the cast acrylic windshield were shattered. Feathers and other bird remains were collected from the canopy and windshield at the initial point of impact and from other locations on the exterior of the helicopter. Laboratory analysis identified the remains as coming from a female red-tailed hawk; the females of that species have an average weight of 2.4 pounds. No defects in the materials, manufacturing, or construction were observed. There was no indication of any preexisting damage that caused the windshield to shatter. Thus, the fractures at the top of the right section of the windshield and damage to the canopy in that area were consistent with a bird impacting the canopy just above the top edge of the windshield. The fractures in the other areas of the windshields were caused by ground impact.

The S-76C++ helicopter has an overhead engine control quadrant that houses, among other components, two engine fire extinguisher T-handles and two engine power control levers (ECL). The fire extinguisher T-handles, which are located about 4 inches aft of the captain’s and first officer’s windshields, are normally in the full-forward position during flight, and each is held in place by a spring-loaded pin that rests in a detent; aft pulling force is required to move the T-handles out of their detents. If the T handles are moved aft, a mechanical cam on each T-handle pushes the trigger on the associated ECL out of its wedge-shaped stop, allowing the ECL to move aft, reducing fuel to the engine that the ECL controls. (Flight crews are trained to move an engine’s fire extinguisher T-handle full aft in the event of an in-flight fire so that the ECL can move aft and shut off the fuel flow to the affected engine.) 

The impact of the bird on the canopy just above the windshield near the engine control quadrant likely jarred the fire extinguisher T-handles out of their detents and moved them aft, pushing both ECL triggers out of their stops and allowing them to move aft and into or near the flight-idle position, reducing fuel to both engines. A similar incident occurred on November 13, 1999, in West Palm Beach, Florida, when a bird struck the windshield of an S-76C+ helicopter, N276TH, operated by Palm Beach County. The bird did not penetrate the laminated glass windshield, but the impact force of the bird cracked the windshield and dislodged the fire extinguisher T-handles out of their detents; however, in that case, the force was not great enough to move the ECLs. 

Maintenance records indicated that PHI replaced the original laminated glass windshields delivered on the accident helicopter with after-market cast acrylic windshields about 2 years before the accident. The after-market windshields provided a weight savings over the original windshields. PHI again replaced the windshields (due to cracking) with cast acrylic windshields about 1 year before the accident. Aeronautical Accessories Incorporated (AAI) designed and produced the after-market windshields and obtained supplemental type certificate (STC) approval from the Federal Aviation Administration (FAA) in April 1997. AAI did not perform any bird-impact testing on the cast acrylic windshields supplied for the S-76C++, and the FAA’s approval of the STC did not require such testing. 

PHI also replaced the original windshields on other helicopters with the cast acrylic windshields; one of these helicopters experienced a bird-strike incident about 2 years before the accident. Postincident examination revealed a near-circular hole with radiating cracks near the top center of the right windshield. The bird penetrated the windshield and pushed the right-side T-handle. The trapped remains of the bird prevented the right-side throttle from being reengaged, but the pilot was able to land the helicopter safely. 

In 1978, when the S-76 was certificated, there were no bird-strike requirements. Currently, 14 Code of Federal Regulations 29.631 (in effect since August 8, 1996) states that, at a minimum, a transport-category helicopter, such as the S-76C++, should be capable of safe landing after impact with a 2.2-pound bird at a specified velocity. This requirement includes windshields. Current FAA requirements for transport-category helicopter windshields also state that “windshields and windows must be made of material that will not break into dangerous fragments.” 

About 4 months after this accident, Sikorsky issued a safety advisory to all operators of the S-76C++ regarding the reduced safety of acrylic windshields (both cast and stretched) compared to the helicopter’s original windshield. According to the advisory, the S-76C++’s laminated glass windshield demonstrated more tolerance to penetrating damage from in-flight impacts (such as bird strikes) compared to acrylic windshields. Sikorsky expressed concern in the safety advisory that the presence of a hole through the windshield, whether created directly by object penetration or indirectly through crack intersections, may cause additional damage to the helicopter, cause disorientation or injury to the flight crew, increase pilot workload, or create additional crew-coordination challenges. The investigation revealed that, following this accident, PHI is replacing all of the windshields in its S 76 helicopters with windshields that meet European bird-strike standards. 

Based on main rotor speed decay information provided by Sikorsky, the accident flight crew had, at most, about 6 seconds to react to the decaying rotor speed condition. Had they quickly recognized the cause of the power reduction and reacted very rapidly, they would likely have had enough time to restore power to the engines by moving the ECLs back into position. However, the flight crewmembers were likely disoriented from the bird strike and the rush of air through the fractured windshield; thus, they did not have time to identify the cause of the power reduction and take action to move the ECLs back into position. 

The accident helicopter was not equipped with an audible alarm or a master warning light to alert the flight crew of a low-rotor-speed condition. An enhanced warning could have helped the accident flight crew quickly identify the decaying rotor speed condition and provided the flight crew with more opportunity to initiate the necessary corrective emergency actions before impact.

The National Transportation Safety Board determines the probable cause(s) of this accident as follows:
(1) the sudden loss of power to both engines that resulted from impact with a bird (red-tailed hawk), which fractured the windshield and interfered with engine fuel controls, and (2) the subsequent disorientation of the flight crewmembers, which left them unable to recover from the loss of power. Contributing to the accident were (1) the lack of Federal Aviation Administration regulations and guidance, at the time the helicopter was certificated, requiring helicopter windshields to be resistant to bird strikes; (2) the lack of protections that would prevent the T handles from inadvertently dislodging out of their detents; and (3) the lack of a master warning light and audible system to alert the flight crew of a low-rotor-speed condition.

HISTORY OF FLIGHT

On January 4, 2009, at 1409 Central Standard Time (CST), a Sikorsky S-76C++ helicopter, N748P, registered to and operated by PHI, Inc. (PHI), as a 14 CFR Part 135 air taxi flight using day visual flight rules (VFR), crashed into marshy terrain approximately 7 minutes after takeoff and 12 miles southeast of the departure heliport. The helicopter sustained substantial damage. Both pilots and six of the seven passengers were killed, and 1 passenger was critically injured. The helicopter departed Lake Palourde Base Heliport, a PHI base (7LS3), in Amelia, Louisiana, and was en route to the South Timbalier oil platform ST301B to transport workers from two different oil exploration companies. No flight plan was filed with the Federal Aviation Administration (FAA), nor was one required. A company flight following plan was filed with the PHI Communications Center that included weather updates, pertinent advisories, and position reports. The flight was tracked via Outerlink, a satellite based fleet-tracking system used by the PHI communications center based in Lafayette, Louisiana.

The helicopter departed 7LS3 at 1402. The helicopter’s flight track, recorded by the Outerlink system, ended about 7 minutes after departure, at 1409. There were no reports of any distress calls or emergency transmissions from the flight crew on the PHI radio frequencies, or on any monitored air traffic control frequencies.

A search and rescue operation was initiated at 1414 after the US Air Force received a 406 MHz Emergency Locator Transmitter (ELT) distress signal with the helicopter’s unique identifier and location. Notification was made to PHI and the United States Coast Guard. Shortly thereafter, the helicopter wreckage was found partially submerged in a marshy bayou, near the location of the last Outerlink track. 

Data and audio recordings retrieved from the helicopter’s combination cockpit voice recorder (CVR) and flight data recorder (FDR) indicated that the helicopter was in level cruise flight at 850 feet mean sea level (msl), traveling at 135 knots indicated air speed, when a loud "bang" occurred. Immediately following the "bang," sounds were recorded consistent with rushing wind, engine power reductions on both engines, and main rotor rpm decay. 

AIRCRAFT INFORMATION

General Information

The twin-engine, 14-seat, 2-year-old helicopter was equipped with glass cockpit instrumentation, a combination cockpit voice recorder (CVR) and flight data recorder (FDR), an enhanced ground proximity warning system (EGPWS), solid state quick access recorder (SSQAR), and a VXP vibration recorder. The two Turbomeca Arriel 2S2 turbo shaft engines were equipped with digital engine control units (DECU). All of these devices were recovered and evaluated for recorded information. 

Engine Control Quadrant Design

The Sikorsky S-76C++ helicopter has an overhead engine control quadrant that houses two engine fire extinguisher T-handles, two engine power control levers (ECL), two fuel selector valve control levers, and various switches for other essential functions. The fire extinguisher T-handles, which are about 4 inches aft of the captain’s and first officer’s windshield, are normally in the full forward position, and are held in place by a spring-loaded pin that rests in a detent. Force is required to move the handles out of the detent and aft. In the event of an in-flight engine fire indication, the affected engine's fire extinguisher T-handle will illuminate, and the flight crew is trained to pull the illuminated handle full aft. In doing so, a mechanical cam on the T-handle lifts the trigger on the ECL out of a wedge-shaped stop, allowing the handle to move aft, which reduces the fuel flow to the affected engine. Eventually, the fuel flow to the engine is shut off as the fire extinguisher T-handle continues aft and pushes the fuel selector valve to the OFF position. The fire extinguisher system is then automatically armed and ready for the pilots to release the fire extinguishing agent into the appropriate engine compartment. 

The S-76C++ engine control quadrant is physically similar to previous models of the S-76 series (S-76A, S-76B, S-76C, S-76C+), in that the ECLs are located in the overhead engine control quadrant. The S-76A, S-76B, and S-76C use push-pull cables to manually control the engine throttle positions on each engine’s hydro-mechanical units. The S-76C+ uses an electronic engine control design with a manual push-pull cable reversionary mode. The ECLs of the S-76C++ series are based on a dual-channel allelectronic engine control design, in that the ECLs are attached to potentiometers that transmit ECL position electronically to each respective electronic engine control unit.

Windscreens

In 2007, about 2 years prior to the accident, PHI removed the original, factory-installed laminated glass windshields in N748P and installed lighter-weight cast acrylic windshields manufactured by Aeronautical Accessories Incorporated (AAI). The Federal Aviation Administration approved use of the replacement windshields under Supplemental Type Certificate SR01340AT, issued to AAI on April 16, 1997. The FAA also issued Parts Manufacturer Approval to AAI on August 3, 1998, for manufacturing of the replacement windshields. The helicopter’s windshields were replaced again in 2008, about 1 year before the accident, due to cracking at the mounting holes. 

Low Rotor Speed Warning Systems

The S-76C++ helicopter's integrated instrument display system (IIDS) provides the flight crew with engine and main rotor system performance information. Three IIDS screens are mounted in the instrument panel; one in front of the captain, one in front of the co-pilot, and one in the center of the instrument panel (the main rotor [Nr] information is only displayed on the pilot's and copilot's IIDS.) The Nr data is provided to the flight crew by a broad colorbar on the right side of the IIDS. The IIDS Nr colorbar is green when the helicopter's Nr is between 106 and 108 percent, yellow when the Nr is between 91 and 105 percent, and red when Nr is 90 percent and below, warning the flight crew of a critical, unsafe flight conditions requiring immediate action. The helicopter was not equipped with an audible alarm or a master warning light to alert the flight crew of a low Nr condition, nor was one required by 14 CFR Part 29.The IIDS also provides a visual caution legend such as "1 out of fly" to the crew any time an engine speed selector is out of the FLY detent with the weight off wheels. 

PERSONNEL INFORMATION

A review of the accident flight crew's training records indicated that both pilots had accomplished all required training and had completed emergency initial and recurrent training in ground school and in the Sikorsky S-76C++ simulator.

The 63-year-old captain had approximately 15,373 flight hours when the accident occurred, of which 14,673 were in rotorcraft; 8,549 as pilot-in-command; and 5,423 in the S-76. He held an airline transport pilot certificate for helicopters, and a commercial pilot certificate for fixed-wing airplanes. He also held an instrument rating for helicopters and airplanes. His last FAA flight proficiency check was on October 27, 2008. His first class FAA medical was issued on August 11, 2008, with a restriction that he wear corrective lenses while flying. He had flown 219 hours in helicopters in the preceding 90 days.

The 46-year-old co-pilot had approximately 5,524 flight hours, of which 1,290 were in helicopters, with 962 in the S-76. He held an airline transport pilot certificate for helicopters and a commercial certificate for fixed-wing airplanes. He also had a flight instructor certificate valid for giving instruction in single/multi-engine airplanes and helicopters. His instrument rating was valid for both airplanes and helicopters. His last FAA flight proficiency check was on April 25, 2008, and his last FAA first class medical was issued on February 26, 2008, with a restriction that he wear corrective lenses while flying. He had flown 205 hours in helicopters during the preceding 90 days. 

METEOROLOGICAL INFORMATION

The weather conditions reported at Amelia, Louisiana, at 1430 CST were scattered cloud layers at 1,500 feet and 3,500 feet; a broken cloud layer at 10,000 feet; visibility 10 miles; winds at 160 degrees at 6 knots; temperature of 24 degrees Celsius; and a dew point of 19 degrees Celsius.

WRECKAGE AND IMPACT INFORMATION

The majority of the major components were accounted for and recovered from the accident scene. Examination of the accident site indicated that the helicopter impacted on its left side on an approximate heading of 120 degrees. Extensive deformation on the left side of the helicopter was noted and exhibited signatures consistent with hydrodynamic and soft terrain impact. The largest portion of the helicopter came to rest in a marsh area and consisted primarily of the upper deck from above the cockpit area to the aft engine compartment. The corresponding lower fuselage section was adjacent to the upper deck. The two sections remained attached by wiring harnesses only. 

The tail boom was separated from the fuselage at the forward attach point (fuselage station 300) and exhibited extensive impact damage. The vertical pylon was partially separated from the tail boom and was deformed to the right side of the aircraft. The left-hand horizontal stabilizer was separated from the tail boom and the right stabilizer was attached but damaged. 

The number 2, 3, and 4 tail rotor driveshaft segments, along with their respective hanger bearings, appeared to have been pulled forward during the impact sequence and exhibited minimal rotational scoring/damage. The coupling disk packs were securely attached to each associated coupling and exhibited minimal distortion. The number 4 driveshaft was observed separated approximately six inches forward of the intermediate gearbox attach point. The number 5 driveshaft was securely attached to the intermediate gearbox and the tail rotor gearbox.

The tail rotor system exhibited extensive damage. The tail rotor gearbox output housing and gear separated from the gearbox center housing. The gear teeth appeared normal and did not exhibit any pre-impact anomaly. The blue, yellow, and black tail rotor blades exhibited minimal rotational impact damage. The black and yellow tail rotor blades had fractured just outboard of their respective hub retention plates. The blue blade was securely attached to the hub and the red blade was observed broken with “broom straw” damage approximately seven inches from the root end of the blade. The remaining section of the tail rotor gearbox housing was observed securely attached to the upper vertical pylon. The tail gearbox magnetic chip plug was removed and observed free of ferrous debris.

The four main transmission mounts were securely attached to the deck structure and did not exhibit any pre-impact damage. The transmission rotated freely. Continuity from the two input shafts to the main rotor head and tail takeoff was established. The magnetic chip plugs were removed and observed clean with oil still remaining inside of them. The transmission fluid level was observed to be in its normal state. 

The main rotor blade system exhibited impact damage consistent with low-speed rotation. The yellow and black main rotor blades were observed attached to the hub and predominately intact with some impact damage. The red blade had separated approximately 27 inches from the root end of the blade, and the remaining portion of the blade was recovered. The blue blade exhibited two separations, one at approximately 40 inches from the root and another about 12 feet from the root. With the exception of a small tip portion, approximately 8 feet of the blue blade was not recovered. 

The main rotor hub was observed securely attached to the main rotor shaft and exhibited substantial impact damage. The drive links and swashplate were intact and did not exhibit pre-impact damage. The four pitch control rods were observed securely attached and undamaged. The three main rotor servo actuators and associated hydraulic lines were securely attached and did not exhibit any pre-impact anomalies. The three primary servo actuators all displayed a part number of 76650-09805-111 and had experienced a recorded 1,104 hours of operations since overhaul, with an approximate total time of 3,400 hours.

The engines were mounted in the airframe engine compartment. The No. 1 (left) engine exhibited significant deformation of the left side and both engines were deformed from their respective mounts in a left-to-right direction. There was no evidence of fire, fuel leaks, or oil leaks.

The No. 1 and No. 2 axial compressor wheels rotated easily. There was evidence of some ingestion of mud and debris. The axial compressor wheel and blades were intact with some tip bending. The power turbine wheel rotated easily. The power turbine wheel and blades were intact and there were signs of blade rub on the bottom of the housing, consistent with a hard landing or impact. The short shafts were observed pulled out of the engine output coupling for both engines but securely attached to the transmission inputs. The flexible couplings and triangular flange exhibited minimal deformation.

Complete control continuity could not be established from the cockpit aft to the mixing unit due to impact damage and crush deformation of the airframe. Control continuity was established from the mixing unit to the flight control servos to the main rotor blades. No pre-impact anomalies were observed. All hydraulic fluid reservoirs were found to be full of hydraulic fluid with no evidence of leakage noted. 

FLIGHT RECORDER INFORMATION

Data from the Penny and Giles combination FDR and CVR were analyzed at the NTSB's Recorders Laboratory with download assistance from the manufacturer's facility in England and the US Army Safety Center in Fort Rucker, Alabama. Both recorders captured the entire accident flight. 

The CVR recorded the sound of a bang and a loud air noise followed by a substantial increase in the background noise level that was recorded on both intercom microphones and the cockpit area microphone. Less than a second after the bang and loud air noise, the CVR captured the sound of decreasing rotor and engine rpm. Seventeen seconds later, the recording ended. 

The non-volatile memory (NVM) from the engines' digital Engine Electronic Control Units (EECUs) was successfully downloaded and no faults were recorded. 

TESTS AND RESEARCH

Engine Examinations

On January 22, 2009, the No. 2 engine, a Turbomeca Arriel 2S2, SN 21010, was disassembled under NTSB supervision. Other than impact damage, no anomalies were noted. The engine’s hydromechanical unit (HMU) was removed and examined. It was determined that it could be run on a test bench. Prior to running the HMU, the position of the resolver and the manual microswitch were determined. The resolver was at 59.33 degrees, which equates to a fuel flow of about 137 pounds per hour and an N1 of about 86.8 percent. The manual microswitch was found to be in the open or neutral position, indicating that the HMU was in the automatic mode. The HMU was then run on the test bench with no significant out-of-limits noted; however, there was a fuel leak observed that appeared to be from the varilip seal. As fuel pressure increased, the fuel leak decreased. 

On January 23, 2009, the No. 1 engine, a Turbomeca Arriel 2S2, SN 21022, was disassembled. Other than impact damage, no anomalies were noted. The engine’s HMU was removed and examined. Impact damage to the unit precluded it from being run on the test bench. The position of the resolver and the manual microswitch were determined. The resolver was at 28.38 degrees, which equates to a fuel flow of about 250 pounds per hour and an N1 of about 98.0 percent. The manual microswitch was found to be in the open or neutral position, indicating that the HMU was in the automatic mode. 

Flight Computer Memory Download and Testing

The FZ-706 Digital Flight Computer, P/N 7015480-903, S/N 05061626, was connected to test equipment and the error codes were successfully recovered. The most recent error codes included Error 20 (Actuator Reference Fail) and Error 18 (LVC Fail – Line Voltage Compensation). These codes are produced in pairs and occur when the avionics DC supply voltage is activated prior to turning on AC power (normal occurrence). The unit was then subjected to the Final Acceptance Test Procedure (ATP) and passed all ATP tests.

The FZ-706 Digital Flight Computer, P/N 7015480-903, S/N 05051607, was connected to test equipment and the error codes were successfully recovered. The most recent error codes included Error 18 (LVC Fail – Line Voltage Compensation) and Error 30 (Yaw Trim Fail). There were no date/time entries associated with the error codes; therefore, no conclusion could be made as to when they were generated. The unit was then subjected to the Final ATP and passed all ATP tests.

Testing of Bird Strike Remnants

A bird specialist with the U.S. Department of Agriculture (USDA) examined the helicopter for evidence of a bird strike. Initial visual examinations did not detect conspicuous evidence of a bird strike. Swabs were then taken from the pilot-side windscreen, from an area of the windscreen that exhibited concentric ring fractures. Similar concentric rings were visible in the gel coat of the fuselage area just above the windscreen. The sample was sent to the Smithsonian Institution Feather Identification Lab for identification. Results from DNA testing on that sample showed that microscopic remains of a hawk variety bird were present. 

Additional swabs for bird remains were taken from the fuselage, empennage, various inlets, including the engines, and from the main rotor hub and main rotor blades. Examination revealed the presence of small parts of feathers under a right side windscreen seal, and in the folds of the right engine’s inlet air filter. 

Material consistent with bird remains was also discovered on the right windshield adjacent to the upper windshield frame structure. Additional samples were also found in the engine air filters. The Smithsonian Institution’s feather identification laboratory in Washington, D.C., identified all of the remains as belonging to a female red-tailed hawk, which has an average weight of 2.4 pounds.

Main Rotor Actuator Examinations

The systems group chairman directed computed tomography scanning of the main rotor actuators on January 9-11, 2009, and the entire systems group convened on January 26 and 27, 2009, in Santa Clarita, California, at the servo manufacturer’s facility to examine and document the main rotor servo actuators. The three main rotor servo actuators were subjected to X-ray computed tomography (CT) and digital radiography scanning to document the internal condition of the components. The scanning was conducted from January 9- 11, 2009. For the CT scans, each component was imaged by using approximately 300 to 500 slices with a resulting image file size of slightly over 2 megabytes for each slice. The slices were each 0.5 mm thick with a cross sectional pixel dimension within each slice of approximately 0.27 mm x 0.27 mm. The total number of slices collected was 1312, and the total scanning time was 59 hours. For the digital radiograph (DR) images, the actuators were subjected to a process similar to a conventional X-ray. The image was gathered using the same detector used for the CT scans, but the actuator remained stationary and the images contain elements superimposed on each other. 

Each data set was evaluated using the VGStudioMax software package to create a three-dimensional reconstructed image of the component. At some points, the actuator was too thick for the X-rays to penetrate with a high enough frequency to generate a good image. For each of the actuators, no evidence of broken parts, clogged hydraulic passages, or internal debris was found.

All three main rotor servo actuators were visually examined and no significant faults were found. All lockwire and cotter pins were in place. After the units were examined, they were all cleaned with a low-pressure solvent wash prior to being loaded into the functional test bench. 

Prior to functional testing, hydraulic samples were taken by capturing the fluid in the servos as it came out of the return port. The samples were collected for both actuator stages for each actuator. Patch testing was conducted on all of the fluid samples and the results showed no contamination of the fluid. 

The aft servo test results were all within the listed test tolerances. The lateral servo test results were all within the listed test tolerances except for the interstage position error test and the input force level (both systems pressurized, retract direction) test. The forward servo test results were all within the listed test tolerances except for the system 1 low side pressure switch test results.

The units were all disassembled and the removed components were examined. All of the plasma coatings were intact on the piston heads and no cracks or missing material was noted. There were some areas on the plasma coating that were shiny and appeared to be consistent with wear polishing. These areas were on the outboard side of the system 1 piston and the inboard side of the system 2 piston. These shiny areas were most pronounced on the aft servo pistons, less pronounced on the forward servo piston heads, and not present on the lateral servo piston heads. The balance tubes were removed and those seals were also intact and did not appear to be worn.

ADDITIONAL INFORMATION

Helicopter Windshield Requirements

Title 14 Code of Federal Regulations (CFR) 29.631 includes general requirements for bird strike resistance for transport-category helicopters and states that, at a minimum, the helicopter should be capable of safe landing after impact with a 2.2-pound bird at a specified velocity. Title 14 CFR Part 27 contains no bird strike requirements for normal-category helicopters, even though they are frequently used for commercial operations such as emergency medical services and sightseeing flights. In addition, current FAA requirements for helicopter windshields in 14 CFR 27.775 and 29.775 do not mention bird strike resistance and simply indicate that "windshields and windows must be made of material that will not break into dangerous fragments." No definition is provided for the term "dangerous fragments," nor is there guidance as to how a manufacturer would show compliance with the requirement.

In contrast, performance-based requirements for airplane windshields specifically address bird strikes. According to 14 CFR 25.775, windshields for transport-category airplanes "must withstand, without penetration, the impact of a four-pound bird" at a specified velocity and also must be designed to minimize the danger to pilots from flying windshield fragments. According to 14 CFR 23.775, windshields for commuter-category airplanes "must withstand, without penetration, the impact of a two-pound bird" at a specified velocity. 

A 2006 study by Dolbeer, Wright, and Cleary, ("Bird Strikes to Civil Helicopters in the United States, 1990-2005," 8th Annual Meeting of Bird Strike Committee – USA, August 2006) which summarized the data for bird strikes on helicopters in the FAA’s National Wildlife Strike Database, concluded that (1) helicopters were significantly more likely to be damaged by bird strikes than airplanes, (2) windshields on helicopters were more frequently struck and damaged than windshields on airplanes, and (3) helicopter bird strikes were also more likely to lead to injuries to crew or passengers. The authors concluded that the "high percentage of windshields damaged for helicopters, combined with the disproportionate number of human injuries, indicates that improvements are needed in windshield design and strength for these aircraft." 

Replacement of Sikorsky S-76 Windshields

All S-76C++ model helicopters are delivered with laminated glass heated windshields that are 0.30-inch thick with a 0.12-inch thermally tempered glass ply outboard, a 0.12-inch chemically tempered glass ply inboard, and 0.06-inch polyvinyl butyral interlayer between them. In 1985, Sikorsky tested the laminated glass heated windshield for impact resistance for compliance with a European airworthiness requirement. During the tests, 26-inch square panels were impacted with 2-pound birds at a speed of 160 knots at an angle of 35 degrees. In some tests, the exterior glass layer cracked after the impact, but the birds did not penetrate the windshield panels. 

In the early 1980's, PHI had delamination issues with the original equipment manufacturer (OEM) glass laminated windshields. In 1984, a PHI customer-owned S-76A, which PHI operated, was purchased with monolithic cast acrylic windshields. At that time PHI became aware that replacement monolithic cast acrylic windshields were available. In the following years (mid 1980's to 1990's), PHI began replacing glass laminated windshields on most of its S-76 fleet. Eventually, all newly purchased PHI helicopters were equipped with monolithic cast acrylic windshields manufactured by AAI. These windshields were manufactured under the AAI PMA and STC SR01340AT. PHI also concurrently removed the main gearbox-mounted AC generator that provides power for the windshield heaters. The cast acrylic windshields are not equipped with heating elements, and thus do not require the AC generator to be installed.

At the time of the accident in January 2009, PHI had a fleet of 46 S-76's, all of which were equipped with monolithic cast acrylic windshields. As of September 11, 2009, PHI still had a fleet of 46 S-76's, 32 of which had been re-fitted with OEM-type glass laminated windshields. This left a fleet of 14 S-76A++ (older aircraft) which still had monolithic cast acrylic windshields.

Other Sikorsky S-76 helicopters in PHI’s fleet also had their original windshields replaced with the cast acrylic windshields. AAI did not perform any bird impact testing on the cast acrylic windshields supplied for the S-76. The NTSB is aware of an additional bird strike incident on April 19, 2006, involving an S-76A++ helicopter operated by PHI that was equipped with a cast acrylic windshield identical to the one in the accident helicopter. The examination revealed a near-circular hole with radiating cracks near the top center of the right windshield. The bird penetrated the windshield and pushed the right throttle to idle. The trapped remains of the bird prevented the right throttle from being re-engaged, but the pilot was able to land the helicopter safely. 

S-76A Certification Basis

The original S-76A, Transport Helicopter Category B, was certified on November 21, 1978 (FAA Type Certificate number H1NE). The certification basis for the S-76A and all subsequent models of this series (Sikorsky S-76A, S-76B and S-76C helicopters) is 14 CFR Part 29 amendments 29-1 through 29-11. Additional regulations were complied with to higher amendment levels, but they are unrelated to the helicopter structure. 

Sikorsky Windshield & Windscreen Certification Basis

According to Part 29, AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT, Subpart D--Design and Construction Personnel and Cargo Accommodations Section 29.775, Windshields and windows: "Nonsplintering safety glass must be used in glass windshields and windows."

S-76C Certification Basis

The S-76C was certified in March of 1991 and was not required to meet the requirements in place at the time the Sikorsky Aircraft Corporation applied to add the S-76C model helicopter to the existing S-76 type certificate. The S-76C Transport Helicopter, Categories A and B, were certified on March 15, 1991, and April 12, 1991, respectively. Although the S- 76C was certified in 1991, in accordance with their normal practices the FAA allowed Sikorsky to use the certification requirements in place at the time of the initial S-76A dated 1978. The practice of applying the requirements that existed at the date of the original certification is known as "grandfathering." The requirements in place for windshields and windscreens in 1991 were:

Section 29.775 - Windshield and windows:

"Windshields and windows must be made of material that will not break into dangerous fragments" (Amendment 29-31, Effective October 22, 1990).

S76A Windshield Testing

Sikorsky Aircraft intended to market the S-76A to the North Sea offshore oil operators. As the FAA had not yet established any bird strike criteria, Sikorsky and the windshield supplier qualified the glass-plastic laminate and later glass-glass laminate windscreens to the British Civil Aviation Requirements (BCAR), which required the windshield to resist penetration of a two pound bird at 160 knots. Tests were conducted in 1978 using the glass-plastic laminate (Canadian National Research Council Report LTR-ST.993) and in 1982 using the 
glass-glass laminate (PPG Report QSR-129910; Page 10-11). Both windshield designs passed the BCAR certification tests at impact speeds of 160-173 knots. Thus in 1978, the Sikorsky-installed windshields had already exceeded the FAA’s requirements that would have been imposed on a new aircraft at the time of the S-76C certification in 1991.

S-76B Windshield Testing

In order to comply with the British Civil Aviation Requirements (BCAR) during the S-76B certifications in October 1985 (Transport Helicopter Category B) and February 1987 (Transport Helicopter Category A), six windshields were tested in August 1985. The six test specimens were fabricated to a standard 26 x 26 inch bolted design and impacted with two-pound birds at velocities slightly above the 160-knot requirement. The first three windows were shot at ambient room temperatures of 70 +/- 5 degrees F, the fourth and fifth panels 32 +/- 5 degrees F and the last panel 20 +/- 5 degrees F.

For the first impact test the speed was 163.9 knots at a temperature of 73 degrees F. The panel survived the impact without any broken plies. Due to the undamaged condition the panel was tested again at a speed of 163.5 knots and a temperature of 71 degrees F. The panel passed the impact test without penetration although the outboard glass ply broke while the inboard glass ply remained intact. The third impact test was conducted at room temperature at a speed of 165.1 knots. The panel passed without penetration although the outboard glass ply was broken. The inboard ply remained intact after the impact. The two required 30 degrees F shots were conducted on the same panel, as the first shot did not cause any damage to the panel. The initial cold shot was conducted between 30degreed F and 32 degrees F at a speed of 161.2 knots. The second cold shot was conducted between 30 degrees F and 31 degrees F at a speed of 163.3 knots. The outboard glass ply was broken and the inboard glass ply remained undamaged and intact.

The fifth test was conducted at a temperature between 20 degrees F and 21 degrees F at a speed of 165.0 knots. The outboard glass ply was broken and the inboard glass ply remained intact. An additional test was conducted on one of the panels with a broken outboard ply. The test was conducted at 78 degrees F at a speed of 158.6 knots; no additional damage was noted. The panel was tested a third time at a speed of 161.8 knots with a two-pound gel package; again no damage to the inboard glass ply was noted. The final test did, however, cause the maximum stress and strain levels on the inboard glass ply.

All of the specimens tested met the prescribed test conditions of no penetration of a 2.0-pound bird at velocities slightly above 160 knots for the S-76B.

Supplemental Type Certificate Certification Basis/Cast Acrylic Windshield Information

The windshields in the accident helicopter were monolithic cast acrylic replacement windshields supplied by a third-party manufacturer, AAI. Installation and use of the replacement windshields was approved by the FAA under Supplemental Type Certificate (STC) SR01340AT, which was issued to AAI on April 16, 1997. The FAA also issued a Parts Manufacturer Approval (PMA) to AAI on August 3, 1998, for the manufacture of the replacement windshields.

AAI applied for the STC on November 27, 1996, and received approval on April 16, 1997. At that time, they were allowed to make parts only for their own use in their own aircraft. They would not be allowed to sell any windshields to other persons until after receiving their PMA approval.

As a holder of a PMA, AAI was authorized to manufacture the parts identified and to sell to any persons wishing to install the parts into a type certificated product per 14 CFR 21.303. The FAA Form 8110-3, Statement of Compliance with Federal Aviation Regulations, indicated that the FAA approval basis for the test and analysis were per 14 CFR 21.303(c)(4). The following is an excerpt from the FAA standards:

Part 21 CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS; Subpart K--Approval of Materials, Parts, Processes, and Appliances; Section 21.303; Replacement and modification parts.
(c) An application for a Parts Manufacturer Approval is made to the [Manager of the Aircraft Certification Office for the geographic area] in which the manufacturing facility is located and must include the following:
(4) Test reports and computations necessary to show that the design of the part meets the airworthiness requirements of the Federal Aviation Regulations applicable to the product on which the part is to be installed, unless the applicant shows that the design of the part is identical to the design of a part that is covered under a type certificate. If the design of the part was obtained by a licensing agreement, evidence of that agreement must be furnished.
(h) Each holder of a Parts Manufacturer Approval shall establish and maintain a fabrication inspection system that ensures that each completed part conforms to its design data and is safe for installation on applicable type certificated products. The system shall include the following:
(6) Current design drawings must be readily available to manufacturing and inspection personnel, and used when necessary. (Amendment 21-67, Effective October 25, 1989).

FAA Certification Requirements for Transport Category Rotorcraft

The following are the standards cited in 14 CFR Part 29, AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT; Subpart D--Design and Construction; General; Section 29.631; “Bird Strike”:

"The rotorcraft must be designed to ensure capability of continued safe flight and landing (for Category A) or safe landing (for Category B) after impact with a 2.2-lb (1.0 kg) bird when the velocity of the rotorcraft (relative to the bird along the flight path of the rotorcraft) is equal to VNE or VH (whichever is the lesser) at altitudes up to 8,000 feet. Compliance must be shown by tests or by analysis based on tests carried out on sufficiently representative structures of similar design.(Amendment 29-40, Effective 8/8/96)"

A review of the STC data package provided by the FAA revealed no documentation to indicate that AAI complied with the intent of 14 CFR 29.775 as specified in either section 2.1 or 2.2, or compliance with 14 CFR 29.631, as specified in section 3.1. As with a Type Certificate (TC), the applicable regulations for an STC are based on the date of application or an earlier date as agreed to by the Administrator, known as "grandfathering." The AAI STC was applied for on November 27, 1996. The FAA Form 8110-3 only indicates that the windshields are compliant with 14 CFR 21.303(h)(6). The FAA Form 8110-3 should also have made reference to 14 CFR 29.775 per section 2.1, had they been allowed to do so by the FAA, “grandfathered," or based upon the STC application date 14 CFR 29.631 as defined in section 3.1 and 14 CFR 29.775 as defined in section 2.2. In addition, compliance with section 14 CFR 29.303(C)(4), tests and analysis, as defined above was indicated as the FAA approval basis for AAI’s PMA. No records of the tests and analysis have been located by the NTSB or provided to the NTSB by either the FAA or the STC holder, AAI.

Manufacturer Safety Alert Regarding S-76 Windscreens

On May 19, 2009, Sikorsky Aircraft Corporation issued a safety advisory (SSA-76-09-002) to all S-76 operators regarding the reduced safety factor of acrylic windshields (both cast and stretched) as compared to laminated glass windshields. According to the advisory, the S-76 laminated glass windshield demonstrated more tolerance to penetrating damage resulting from in-flight impacts (such as bird strikes) compared to acrylic windshields. Sikorsky expressed concern that the presence of a hole through the windshield, whether created directly by object penetration or indirectly through crack intersections, may cause additional damage to the helicopter, cause disorientation or injury to the flight crew, increase pilot workload, and create additional crew coordination challenges. 

U.S. Army Windshield Tests

The U.S. Army generally no longer uses cast acrylic windshields. Cast acrylic windshields may still be used in certain applications where it is necessary for an ejection seat to be able to easily break through the canopy. Two U.S. Army reports compared the impact resistance of windshields constructed of cast acrylic and different materials. One U.S. Army study ("UH-1 Ballistic and Bird Impact Test Study," Report AMMRC CTR 75-7, April 1975) reported on bird strike tests of Bell UH-1 helicopter windshields made of different materials. The UH-1 windshield materials tested included cast acrylic, polycarbonate, and a composite constructed of a layer of polycarbonate bonded to a layer of chemically tempered glass. The report concluded, in part, that the polycarbonate and the polycarbonate bonded to glass both offer far greater bird strike protection than a standard cast acrylic windshield. The report further indicated that a cast acrylic windshield at a cruising speed of 90 knots is incapable of defeating a bird strike, and that the Plexiglas breaks into large fragments that could cause serious injury to the flight crew. 

Another U.S. Army report ("Design, Test and Acceptance Criteria for Helicopter Transparent Enclosures," Report USARTL-TR-78-26, 1978) documented a study of the low-energy impact response of a number of different windshield materials. The materials tested included a tempered-glass laminate, a laminate of glass and stretched acrylic, monolithic stretched acrylic, monolithic cast acrylic, and monolithic polycarbonate. The report concluded that the cast acrylic needed to be three times as thick as the stretched acrylic or the polycarbonate to provide a similar level of protection against impact.

Hazards of Bird Strikes on Aircraft

Following its investigation of a March 4, 2008, crash of a Cessna 500 airplane, N113SH, that had a bird strike in Oklahoma City, Oklahoma, (NTSB Aircraft Accident Report NTSB/AAR-09/05) the NTSB issued Safety Recommendation A-09-75 on September 29, 2009, asking the FAA to "require all 14 Code of Federal Regulations (CFR) Part 139 airports and 14 CFR Part 121, Part 135, and Part 91 Subpart K aircraft operators to report all wildlife strikes, including, if possible, species identification, to the National Wildlife Strike Database." 

Low Rotor Speed Warning Systems

Some single- and twin-engine helicopter models are equipped with an audible alarm and/or warning light to alert the flight crew of a low Nr condition. For instance, Bell Helicopter twin-engine models 212, 412, and 430 are equipped with an audible alarm and a warning light to notify the flight crew if the rotor rpm starts decaying and falls below the specified threshold. On July 9, 2009, the FAA issued a notice of proposed rulemaking (NPRM), titled "Flightcrew Alerting," that proposed revisions to 14 CFR 25.1322 regarding definitions, prioritization, color requirements, and performance for flight crew alerting for transport-category airplanes. The NPRM proposes to incorporate redundant sensory cuing (such as aural and visual) into alerts for conditions requiring immediate flight crew awareness. The revisions are based on human factors principles, with the intent to ensure that alerting systems in newly certificated aircraft facilitate flight crew performance. In a letter, the NTSB indicated that it supported the proposed revisions and acknowledged the significant advances in technology and alerting capabilities of aircraft. In addition, the NTSB recognized the importance of providing salient, recognizable cues through at least two different sensory systems by a combination of aural, visual, or tactile indications. 

Based on the main rotor speed decay information provided by Sikorsky, the flight crew of N748P had about 6 seconds or less to react to the decaying Nr condition. 

When the S-76 was certificated in 1978, 14 CFR 29.33 did not require an audible alarm or warning system for low Nr conditions. The subsequent revision to 14 CFR 29.33 in 1978 required a low Nr warning system in single-engine helicopters and in multi-engine helicopters that did not have a device that automatically increases power on the operating engine if one engine fails. Since the S-76 has a system that automatically increases power on the operating engine in order to maintain Nr, the accident helicopter would not have required an alarm or warning system even if the latest revision did apply. The NTSB is aware that both the Sikorsky S-92A and the S-76D (which is currently undergoing certification) have an audible low Nr warning, even though these aircraft are equipped with a system that automatically increases power in the working engine. Requirements for normal-category helicopters in 14 CFR 27.33 are similar. 

Flight Crew Training for Simultaneous Dual-Engine Failure

A review of the accident flight crew's training records indicated that both pilots had fulfilled all training requirements and had completed Sikorsky S-76C++ emergency initial and recurrent training in ground school and in the simulator. The emergency procedures section of the Sikorsky S-76 flight manual describes the dual-engine failure procedure while hovering, during takeoff and initial climb, and during cruise. Upon dual-engine failure, the helicopter will yaw to the left due to the reduction in torque as engine power decreases. An immediate collective pitch reduction would be required to maintain Nr within safe limits. In most instances, if dual-engine failure occurs a safe autorotation landing could be made.

According to PHI, prior to the January 4, 2009, accident, line oriented flight training (LOFT) for dual-engine failure was conducted in both ground school and in a simulator for visual and instrument flight rules conditions. Training was conducted so that one engine failed at a time, ultimately resulting in autorotation. Training for simultaneous sudden failure of both engines was part of initial training but was not part of annual recurrent training. Since the accident PHI modified LOFT to include sudden simultaneous dual-engine failure training both on the ground and in the simulator during initial and annual recurrent training.

A review of NTSB data indicates that from 1982 to present the NTSB has investigated 52 accidents involving loss of engine power in dual-engine helicopters, 23 of which resulted in substantial damage. In general, the causes of the dual-engine loss of power were due to fuel exhaustion, fuel contamination, and operational errors, among other factors. 

Materials Laboratory Examination of Windscreen Components

The parts examined from the wreckage at the NTSB’s Materials Laboratory included pieces recovered from the left and right windshields and pieces from the canopy structure that supported the windshields. The canopy structure included two pieces of the canopy and sill from above the windshields, pieces of the left and right doorpost structures that supported the outboard edges of the windshields, the center post that supported the inboard edges of both windshields, and pieces from the center of the nose and instrument panel that supported the bottom forward edges of the windshields and where the bottom of the center post was attached. 

No defects in the materials, manufacturing, or construction were observed. There was no indication of any pre-existing damage that contributed to the accident.

The left and right windshields were mirror images of each other. The windshield material was specified to be aircraft-grade cell cast acrylic sheet per military specification L-P-391, Item A, Type 1, Grade C, with a thickness of 0.312 inch. Markings indicate that the left windshield was manufactured in January, 2008, and the right windshield was manufactured in February, 2008.

The top edges of the windshields were approximately 30 inches long. The inboard edges were approximately 43 inches long. The bottom forward edges were approximately 34 inches long. The outboard bottom edges were approximately 17 inches long and the aft outboard edges were approximately 42 inches long.

Each windshield was attached to the canopy structure by 75 screws, which threaded into nutplates that were riveted to the canopy. Thickness measurements from random locations on the right windshield ranged from 0.307 inch to 0.324 inch. Thickness measurements from random locations on the left windshield ranged from 0.282 inch to 0.290 inch. 

The helicopter impacted the ground along its lower left side and separated along a generally horizontal plane into an upper part and a lower part. The upper part remained oriented along the line of flight, but the lower part came to rest with the nose directed to the left of the line of flight. 

In the area of the windshields, the upper canopy structure was separated from the lower canopy structure by fractures at the top of each doorpost and at the base of the horizontal arm of each wishbone, along with fractures at the top and bottom of the center post. There were no fractures through the frame of either windshield along the doorpost structures themselves. The center post was also substantially intact and remained connected to the upper canopy structure by electrical wires. 

On the right side, the doorpost was separated from the upper canopy by several fractures through the composite structure and by rivet pullout. Approximately 4 inches in from the outboard edge of the right windshield there was a vertical fracture through the lip supporting the windshield formed by the bonded canopy and sill pieces. 

Examination of the upper canopy revealed a puncture in the roof above the right windshield. A roughly rectangular area of the canopy was cut open to investigate the cause of the puncture, extending from 16 and 24 inches to the right of the centerline and from 1 to 4 inches above the edge of the windshield. No specific cause of the puncture was identified by visual examination. Swabs were also taken from this location for assessment of potential bird remains. 

In an area between 8 and 16 inches to the right of the centerline, the paint on the canopy above the top edge of the windshield exhibited a series of roughly horizontal parallel cracks. These cracks occupied an area that extended up approximately 6 inches from the edge of the windshield. In the area from 8 to 12 inches to the right of the centerline, and from 2 to 6 inches above the top edge of the windshield, the paint cracks were shorter and were continuous across the aft end of the fore-and-aft crack found at 8.5 inches to the right of the centerline. The most outboard of these cracks in the paint were found in an area not adjacent to any cracks in the underlying composite structure, whereas other areas of paint cracks were generally found to be adjacent to cracks or fractures in the underlying structure, within 1 inch or so.

The canopy and sill structures above the left windshield were fractured in two locations and these fractures were part of a system of fractures that separated the smaller left-side piece of the roof and sill structure from the rest of the canopy structure. On-scene photographs indicate that the two pieces of the upper canopy were still connected by electrical wiring.

The center post was separated from the upper canopy structure by fractures through the composite material accompanied by impact-related disbonding and delaminations. 

All of the fractures observed in the windshields were typical of brittle overstress, with fractures occurring on planes of maximum tension. Fracture features generally showed that the crack progressed more rapidly at one free surface than at the other, indicating fracture under tensile stresses resulting from bending, but some areas of fracture under nearly in-plane tension were also observed. Features on the fracture surfaces were used to determine crack propagation directions and the direction of bending. There were some cracks where the direction of bending changed from one part of the crack to another; in some cases this transition occurred smoothly and in other cases the crack arrested and then re-initiated under bending in the opposite direction. Primary or early cracks were identified by the continuity of the fracture surface and fracture features; secondary cracks either initiated or terminated at primary cracks. There was little symmetry between the fracture patterns in the two windshields. The left windshield was fractured into smaller pieces, consistent with the ground impact of the helicopter on its left side. 

The fractures in the windshields originated at multiple locations and consisted of several different systems of fractures. Although some small pre-existing cracks (on the order of 0.01 inch in length) were observed at the surfaces within the holes in the windshields for the attachment screws, the pattern of fractures in the windshields is inconsistent with fracture initiation resulting from a single pre-existing crack reaching a critical size. 

In general, the pieces of the windshields separated from the supporting frame by fractures that ran near or through the attachment screw holes. Not all of the pieces of either windshield were recovered, despite an extensive search of the bayou surface both around the point of impact as well as extending backward up the flight path. In general, the pieces that remained attached to the frame pieces after the accident were relatively small, typically extending 3 inches or less from the frame. The largest windshield fragments that remained attached to frame components after the accident were along the top edges and along the upper right side of the center post. The fractures in the right windshield along the top edge and on the center post generally formed a pattern of concentric curves and radial lines centered approximately 13 inches to the right of the centerline, at or above the top edge of the windshield. The center of this pattern coincided with the area of parallel cracks in the paint on canopy. Two of the secondary radial cracks in this area were centered on the crack in the canopy and sill structure 8.5 inches to the right of the centerline, just outboard of a vertical rib stiffening the bonded canopy and sill. 

Similar Bird Strike Incidents

A similar bird strike incident occurred on November 13, 1999, in Florida involving an S-76C+ helicopter, N276TH, operated by Palm Beach County. The bird did not penetrate the laminated glass windshield, but the impact force of the bird cracked the outer ply of the windshield and dislodged the fire extinguisher T-handles out of their detent; in this case, the ECLs did not move. 

The investigation also revealed an event in 2006 involving an S-76A++ helicopter windshield that was struck by a seagull. That helicopter was equipped with STC cast acrylic windshields identical to those on the helicopter involved in this accident. A photograph that was taken after the impact was examined by NTSB investigators. The examination revealed that the seagull penetrated the windshield and became lodged in the interior trim. Along the top edge of the windshield, fractures intersected the 2nd through 7th windshield mounting screw holes counting out from the center.
=================

NEW ORLEANS — The owner of a helicopter that crashed in Louisiana in 2009, killing a Pensacola man and seven others, is asking a federal court to sanction the aircraft’s manufacturer for allegedly hiding a damning internal report to conceal its liability.

In a court filing last Friday, PHI Inc. claims Sikorsky Aircraft Corp. withheld a report by one of its lead engineers because his analysis concluded Sikorsky’s faulty design caused its helicopter to crash.

PHI is seeking court-ordered monetary sanctions against Sikorsky, which faces a federal trial in November for a batch of consolidated lawsuits filed by relatives of crash victims.

Charles W. Nelson of Pensacola, a 2002 Escambia High School graduate, who worked as an electrician, was among workers being carried to a Shell Oil Co. platform in the Gulf of Mexico when it crashed near Morgan City, about 100 miles southwest of New Orleans.

The crash killed both pilots and six passengers and critically injured a lone survivor, Steve Yelton of Floresville, Texas. The helicopter was owned by PHI Inc.

The PHI pilots killed in the crash were: Thomas Ballenger, 63, of Eufaula, Ala.; and Vyarl Martin, 46, of Hurst, Texas. The passengers were: Nelson; Andrew Moricio and Ezequiel Cantu of Morgan City, La.; Randy Tarpley of Jonesville, La.; Allen Boudreaux Jr. of Amelia, La.; and Jorey A. Rivero of Bridge City, La.

PHI says it wouldn’t have paid as much last year to settle plaintiffs’ claims if it had seen Wonsub Kim’s report beforehand.

“Sikorsky hid the existence of Dr. Kim’s analysis because it was not helpful to Sikorsky. In fact, Dr. Kim’s analysis undermines Sikorsky’s entire defense,” PHI attorneys wrote.

Sikorsky spokesman Paul Jackson said in an email that the company “strongly” denies PHI’s allegation and is prepared to “defend against it strenuously.” Jackson wouldn’t comment beyond that statement.

Investigators concluded a bird struck the Sikorsky S-76 before it crashed on Jan. 4, 2009.

Investigators found the remains of a Red-tailed hawk on the remnants of the pilot’s side windshield. They also found bird feathers under a windscreen seal and in an engine.

PHI says Sikorsky has claimed PHI was responsible for the crash because it replaced the helicopter’s original glass windshield with a plastic one that allowed the bird to penetrate the windshield and disable its throttle controls.

PHI, however, says Kim’s November 2009 report shows Sikorsky’s faulty design of the helicopter’s canopy and throttle quadrant caused the crash. Kim concluded the windshield doesn’t fail when a bird strikes a Sikorsky S-76 exactly where it did in this case, PHI says.

“Instead, the bird strikes causes the canopy to fail ‘substantially,’ which causes the throttles to disengage, turning off the engines, and leading to the crash just seventeen seconds later,” PHI lawyers wrote.

PHI claims Sikorsky intentionally kept Kim and his analysis hidden before it turned over his report on March 14, 2011. Yelton’s attorney, Paul Sterbcow, said they learned of the report’s existence while questioning a witness in February 2011.