Tuesday, January 19, 2016

Piper PA-32RT-300 Lance, N3046H: Accident occurred January 19, 2016 at Accomack County Airport (KMFV), Melfa, Virginia

http://registry.faa.gov/N3046H

FAA Flight Standards District Office:  FAA Richmond FSDO-21

NTSB Identification: GAA16CA110 
14 CFR Part 91: General Aviation
Accident occurred Tuesday, January 19, 2016 in Melfa, VA
Probable Cause Approval Date: 03/14/2016
Aircraft: PIPER PA32RT, registration: N3046H
Injuries: 1 Minor.

NTSB investigators used data provided by various entities, including, but not limited to, the Federal Aviation Administration and/or the operator and did not travel in support of this investigation to prepare this aircraft accident report.

The pilot reported that while landing in crosswind conditions, a wind gust "forced" the airplane to drift to the right of the runway. The pilot initiated a go-around, but further reported that a "sudden drop" in the wind led to an aerodynamic stall. 

After the airplane stalled, it impacted a structure adjacent to the runway. A postimpact fire ensued and the airplane was destroyed. 

The pilot reported that there were no pre-impact mechanical failures or malfunctions with the airframe or engine that would have precluded normal operation.

The National Transportation Safety Board determines the probable cause(s) of this accident as follows:
The pilot's inadequate compensation for a gusting crosswind during landing, which resulted in an aerodynamic stall, impact with a structure, and subsequent postimpact fire.




ACCOMACK CO., Va. -  Authorities are investigating a small plane crash in Accomack County.

Virginia State Police say just after 3:00 PM, they were alerted to a small plane crash at the Accomack County Airport. 

The pilot and passenger were apparently able to escape the wreckage.

Troopers responded to the scene to investigate.

The Federal Aviation Administration tells 47 ABC that the plane was a Piper PA32, that was attempting to land at the airport. 

The pilot reportedly told the FAA that a strong gust of wind caused the aircraft to stall and go off course and crash into a building.

The FAA says it will investigate, and the National Transportation Safety Board will determine the probable cause of the accident.

An employee of the airport tells 47 ABC that they will be shut down until VSP clears the scene.

Story and video:  http://www.wmdt.com


MELFA, Va. (WVEC) -- Virginia State Police are investigating a plane crash on the Eastern Shore.

A small plane crashed at the Accomack County Airport around 3 p.m. Tuesday.

According to police, the 1979 Piper Lance plane caught a gust of wind during a landing attempt, causing it to run off the runway and across a grassy area where it struck a storage shed and light pole, causing the plane to catch fire.

Smoke and wreckage was visible near the northwest side of the airport property.

The pilot and passenger, the only occupants in the plane, were able to escape the wreckage without injuries.

The Accomack County Sheriff's Office, Virginia State Police, Accomack County Department of Public Safety were at the scene, along with Onley and Melfa Volunteer Fire Department first responders.

Story and photo gallery: http://www.13newsnow.com


Emergency personnel responded to a report of an airplane crash at the Accomack County Airport in Melfa, Virginia shortly after 3 p.m. Tuesday.

Smoke was visible near the northwest side of the airport property minutes after the crash, according to an eyewitness.

The pilot and passenger were able to escape the wreckage unharmed, Virginia State Police spokeswoman Michelle Anaya said.

Their names were not immediately released.

The airplane ran off the runway during a landing attempt and struck a building, causing the aircraft to catch fire, Anaya said.

The scene was secured and officials were awaiting the arrival of Federal Aviation Administration personnel as of 6 p.m., she said.

Personnel from the Accomack County Sheriff's Office, Virginia State Police and the Accomack County Department of Public Safety were at the scene Tuesday afternoon, along with first responders from Onley and Melfa Volunteer Fire Departments.

The crash remains under investigation, Anaya said.

Story and photos: http://www.delmarvanow.com





Loss of Engine Power (Total): Eurocopter EC130, N11VQ; accident occurred January 17, 2016 in Hanalei, Hawaii

The National Transportation Safety Board did not travel to the scene of this accident.

Additional Participating Entities:

Federal Aviation Administration / Flight Standards District Office; Fort Worth, Texas
Airbus Helicopters; Grand Prairie, Texas
Safran Helicopter Engines; Grand Prairie, Texas
Blue Hawaiian Helicopters; Kahului, Hawaii
Air Methods; West Mifflin, Pennsylvania
Blue Hawaiian Helicopter; Kahului, Hawaii
Thales Group; Toulouse, France
Zodiac Aerospace; Issoudun, France

Aviation Accident Factual Report - National Transportation Safety Board: https://app.ntsb.gov/pdf


http://registry.faa.gov/N11VQ 


Location: Hanalei, HI
Accident Number: WPR16FA055
Date & Time: 01/17/2016, 1432 HST
Registration: N11VQ
Aircraft: AIRBUS EC130
Aircraft Damage: Substantial
Defining Event: Loss of engine power (total)
Injuries: 7 Serious
Flight Conducted Under: Part 135: Air Taxi & Commuter - Scheduled - Sightseeing

HISTORY OF FLIGHT

On January 17, 2016, about 1432 Hawaii standard time (HST), an Airbus EC130 T2, N11VQ, was substantially damaged when it was involved in an accident near Hanalei, Hawaii. The commercial pilot and six passengers were seriously injured. The helicopter was operated as a Title 14 Code of Federal Regulations Part 135 air tour flight.

The pilot reported that, about 25 minutes after departure for the sightseeing flight, the helicopter was about 1/4-mile offshore northwest of the Honopu Sea Arch between 1,300 ft and 1,400 ft mean sea level (msl) when he heard the low rotor rpm aural warning horn. He immediately entered an autorotation, turned toward the beach, and transmitted over the radio that he had an engine failure. As the helicopter approached the shoreline, he made a sharp, low-level right turn to the south to avoid large boulders in his intended landing area and subsequently landed hard on the beach. He applied the rotor brake to slow the rotor and noted that the engine was not running. The passengers began to exit the helicopter and he pulled the engine fuel cutoff.

The first indication of an inflight loss of power was an uncommanded right yaw that occurred at 14:31:31. The first limit indicator (FLI) on the instrument console started to drop rapidly, followed by the GENE (generator) annunciator light illumination. The helicopter entered a 20° right turn toward the coastline. Five seconds later, the ENG P (engine oil pressure) annunciator light illuminated, followed by the FUEL P (fuel pressure) light and the helicopter returned to a nearly-level flight attitude. About 10 seconds later, the helicopter was passing through 600 ft at 85 knots. Rotor rpm had increased to 430. After about 11 seconds, the coastline became discernable and revealed a rocky, unsuitable landing area. The helicopter's altitude was about 350 ft and the rotor speed was 364 rpm. At 14:32:08, the helicopter had entered a 45° right bank, altitude was 275 ft, airspeed was zero, and the helicopter was maneuvering toward a sandy beach area. About 3 seconds later, the LIMIT (servo limit) light illuminated, the helicopter entered a near-level pitch attitude, airspeed was near zero, and rotor speed was around 200 rpm. Initial ground impact was at 14:32:13 and the rotorcraft was at rest at 14:32:15.

AIRCRAFT INFORMATION

The single-engine helicopter was configured for air tours with 6 passenger seats and a single pilot seat, and equipped with a skid mounted emergency flotation system. The pilot occupied the left front seat. Review of maintenance records showed that the helicopter was maintained in accordance with an FAA-approved aircraft inspection program (AAIP) which can differ from the maintenance program recommended by the manufacturer. The Hobbs meter read 692.7 hours immediately after the accident. The helicopter was equipped with an Appareo Vision 1000 flight data recorder and a Datatoys AirKnight HD4s video recorder system that had hard-mounted internal and external cameras for recording the tour for the customer.

The rotorcraft flight manual listed the maximum gross weight of the helicopter as 5,512 lbs. Information provided by the operator indicated that the helicopter departed on the accident flight with a takeoff weight of 5,284 lbs. The helicopter would have consumed about 170 lbs (26 gal) of fuel during the flight.

FLIGHT RECORDERS

The helicopter had two flight recorder systems installed, an Appareo Vision 1000 small self-contained image, audio, and data recorder, and a Datatoys AirKnight HD4s airborne video recorder designed for helicopter tour applications.

Data from both systems was recovered and reviewed by the NTSB Vehicle Recorders Laboratory.

WRECKAGE AND IMPACT INFORMATION

The helicopter landed hard onto Kalalau Beach, along the north shore of Kauai. While on the beach, sea water washed over the landing skids and cabin deck of the helicopter. The operator transported the helicopter from the landing site to their maintenance hangar in Lihue, Kauai. On January 25, 2016, technical representatives from Safran Helicopter Engines (Safran HE) and Airbus Helicopters under the oversight of an FAA inspector examined the helicopter at the hangar. During the examination, the engine's main fuel injection pipe between the fuel valve assembly and the injection union was found cracked and broken at the B-nut connection. A black, oily substance was observed around the interface between the engine magnetic seal and the starter-generator. The airframe sustained structural damage to the tail boom and cockpit floor. The engine, starter-generator, vehicle and engine management display (VEMD), digital engine control unit (DECU), and engine data recorder (EDR) were removed for further examination at the manufacturer's facility. The fractured fuel pipe was sent to the NTSB Materials Laboratory.

On May 11, 2016, the NTSB investigator-in-charge (IIC) and technical representatives from Blue Hawaiian Helicopters, Air Methods Corporation (DBA Blue Hawaiian Helicopters), Airbus Helicopter and Zodiac Aerospace, examined the helicopter wreckage at the Lihue hangar. The tail skid was bent up into bottom of the fenestron and the bottom of the fairing displayed a 20-inch crack in the longitudinal direction. The tail boom was symmetrically buckled on the left and right sides at the intermediate structure attach point and had significant buckling at the bottom. The rear fenestron drive shaft support bracket displayed a slight buckle. The engine deck was slightly buckled aft of the rear engine support. Plastic deformation of the engine support in the aft direction was observed. The right transmission bay, transmission support rod, and lower rod end rivets had sheared along the support tube axis. The main gear box (MGB) right support rod was deflected 24 mm at the largest point (mid span). The right cargo bay had no noticeable buckling of the X-wall. The crashworthy fuel tank displayed no deformation or leaking of fuel. The cockpit center console's forward upper mount plate was buckled on the right side. The left MGB support rod rivet heads were sheared. The left cargo bay displayed buckling of the X-wall at the lower aft corner. The left firewall had buckled along the lower edge. There were two areas of slightly buckled skin indentations on the fuselage transition area. The helicopter sat with a 5° list to the right.

The seats were documented and then removed from the helicopter. The seats were manufactured by Zodiac Seats France (ZSFR), part numbers 19820-02-00 (front, referred to as T198) and 28410-0400 (rear, referred to as T284). The helicopter cabin was scanned using a 3D handheld laser, and all the seats were laser scanned. Pitch & roll angles were similar for all the seats. Seat foam and upholstery had manufacturing labels from Aero Comfort Company, the seat labels did not display a technical standard order (TSO) compliance number. No external impacts to any of the seats was observed. All seat equipment was installed correctly, according to Airbus and Zodiac technical representatives.

The following table documents the postaccident configuration of each seat. The stroke is the measured downward displacement of the seat as a result of vertical accelerations, and the fuses are metal links that release once a specified amount vertical force is experienced allowing the seat to stroke downwards (Note: Seat No. 3 is used in some configurations, but was not installed in the accident helicopter).


Table 1 - Seat displacement measurements.

SURVIVAL FACTORS

Injuries

Six of the seven helicopter occupants were diagnosed on the day of the accident with thoracolumbar compression fractures. The seventh was diagnosed several weeks later. With the exception of the occupant of seat No. 1 (who became paraplegic), the occupants remained neurologically intact. The occupants in seat Nos. 2 and 7 had fractures at multiple vertebral levels. The occupants in seat Nos. 1 and 2 both had sternal fractures.

Helicopter Seat Design

Both T198 and T284 seats consisted of a composite bucket affixed to a structural frame composing both the seat legs and seatback supports. The seatback supports contained energy absorbing features in order to meet the requirements referred to in 14 CFR sections 27.785, 27.561, and 27.562. Corrugated absorption devices and fuses were built into either side of seatback supports (total of two in each seat) to absorb energy in event of high vertical loading. The composite seat bucket was affixed to the seat frame on a set of tracks via two "bucket fixings" and plastic bushings (rollers). When subjected to high vertical loads, these features allowed the bucket to move downwards while the absorption devices deformed (i.e. stretched) and absorbed vertical energy. The undeformed dimension of the absorption devices was 10.7cm. Additionally, the seat foam and upholstery are considered part of the seat design and certification (SFR ETSO C127a).

Zodiac Seats France reported to the BEA (Bureau d'Enquetes et d'Analyses pour la securitie de l'aviation civile) that the two models of seats installed in the helicopter were certified to Europe TSO C127a for dynamic conditions of a 30g downward test with the seat pitched upwards at 60°, and an 18.4g forward dynamic test both using a 170-pound anthropomorphic test device .

Immediately before takeoff, the internal camera video recorded the passengers' seating position and the visible harness buckle location on those individuals. The helicopter seat designated numbers are as follows; the pilot seat in the front left, seat Nos. 1 and 2 were front center and right, respectively; seat Nos. 4, 5, 6, and 7 were the rear seats numbered right to left, sequentially. The pilot's harness lap belt was positioned below his waist and low across his hips. The harness buckle position on the passenger in seat No. 1 was positioned about mid abdomen. The seat No. 2 passenger's harness buckle was in the vicinity of his mid abdomen. The seat No. 4 passenger's left shoulder harness was visible, but all other harness features were obstructed. The seat No. 5 passenger harness buckle appeared to rest slightly below mid abdomen. View of the seat No. 6 passenger harness configuration was obstructed. The seat No. 7 passenger harness buckle was above their mid abdomen.

About 2 minutes before the beginning of the accident sequence, the AirKnight camera showed the passenger cabin view. The seat No. 1 passenger was leaning forward, her right shoulder harness was secured over the right shoulder, her left shoulder harness was not seen over the left shoulder but moved in concert with the right shoulder harness at the Y strap. The shoulder harness was moving consistent with the passenger's body movement, which was slightly leaned forward. The pilot's shoulder harness was in place. The pilot's left hand was forward and resting on an undetermined cockpit object. The seat No. 2 passenger was seated normally and wearing their shoulder harness. The seat No. 4 passenger was seen with the left shoulder harness clearly visible; their right shoulder harness was obstructed. The seat No. 5 passenger was seated normally and seen wearing both shoulder harnesses. The seat No. 6 passenger was taking a photograph at head level and had his body oriented to the right in the helicopter. The view of his harness position was obstructed. The seat No. 7 passenger was seated normally and was looking out the left side of the helicopter; both shoulder harnesses were visible.

Immediately prior to initial ground impact, passenger 1 had moved her left hand off her left knee and neither of her hands were visible in the field of view. Her feet appeared to be flat against the rotorcraft floor. The other passengers were not in the field of view of the camera, and therefore their body positions were not documented.

Hard Landing Impact Analysis

Airbus Helicopters used GPS, helicopter flight data recorded by the on-board Vision 1000 Flight Data Monitoring hardware, post-accident helicopter structural measurements, on-scene photos, and landing terrain plasticity (sand) to estimate landing attitude and impact forces experienced by the helicopter during the accident. The on-site documentation and the flight data were consistent in showing that the helicopter experienced two landing events, an initial landing followed by a bounce and a second landing. Data showed that immediately before ground impact the helicopter was in a 10° right bank, 3.6° nose up, forward velocity was 13.2 m/s and vertical velocity was 12.2 m/s. A Mecano simulation was created modeling these conditions. The results of the simulation estimated that the initial landing impact was 24g in the vertical axis, 9g in the horizontal axis, and 4g in the lateral axis. The second landing forces were estimated as 19g vertically, 7g horizontally, and 1 g laterally. Based on the low level of rotational acceleration of the center of gravity, all occupants experienced about the same level of impact forces.

Harness / Seat Belt Positioning on Occupant

Section 4.3 of the EC 130 B4 Flight Manual is the Start Up Checklist. Under the subtitle 4.3.1 Engine Prestart Check is:

"- Seats and control pedals…………...ADJUSTED"

"- Seat belts ……………………………FASTENED"

There is no information in the flight manual describing the proper use or positioning of the seat belt on occupants.

Blue Hawaiian Helicopters provided a 6-minute instructional and safety video for the passengers to watch before flight . The seat belt instruction portion of the video simply states to pull the waist straps until snug and showed a passenger with the buckle positioned over her navel. The operator had an employee escort the passengers to the helicopter. They then would assist the passengers in entering the helicopter and fastening the four-point harness.

FAA Medical Facts for Pilots, publication AM-400-90/2, Seat Belts and Shoulder Harnesses (2004), states:

"The restraint should be adjusted as tightly as your comfort will permit to minimize potential injuries. The safety belt should be placed low on your hipbones so that belt loads will be taken by the strong skeleton of your body. If the safety belt is improperly positioned on your abdomen, it can cause internal injuries." "…When it is tight about your hips, the safety belt should be positioned so that it makes about 55 degrees with the center of the airplane. This allows it to resist the upward pull of the shoulder belts, reducing the risk of internal injury."

TESTS & RESEARCH

Blue Hawaiian Fleet Survey of Fuel Pipe

The Air Methods Director of Engineering and Reliability issued a Fleet Campaign Directive, Inspection of fuel pipe B-nut checking for torques and leakage. Air Methods Corporation owns and operates Blue Hawaiian Helicopters. The survey of the Blue Hawaiian fleet of EC-130 helicopters did not identify any loose fuel pipe B-nuts or leakage of the fuel pipe.

Engine Exams and Tests

On February 4, 2016, the NTSB IIC with technical representatives from the FAA, Safran Helicopter Engines, Airbus Helicopters, and party representative from Blue Hawaiian Helicopters examined the engine and associated components at the Safran Helicopter Engines facility in Grand Prairie, Texas. The engine was visually examined. No external damage was noted. The compressor and turbine turned freely by hand. Compressed air was passed through the engine to clear out any debris. A borescope examination of the compressor, combustion section and the high-pressure turbine, revealed no anomalies. The broken fuel pipe had been removed during the initial on-scene examination. A replacement fuel pipe was installed on the engine. The starter-generator was removed and a black oil/grease substance was observed on the starter-generator engine side mounting flange and on the forward face of the starter-generator. A sample of the oil/grease substance was taken for further examination. The starter-generator (Thales SN: 5493) was visually examined. The rotor's splined shaft rotated freely by hand and 1-mm of lateral movement was observed when a lateral force was applied by hand to the shaft. Maintenance records showed that the starter-generator was inspected on January 6, 2016, at an engine total time of 627.2 hours, in conjunction with a 150 hour and 600 hour inspection. The brush length was measured in the yellow range, and the unit was placed back into service.

The engine was equipped with a standard 6mm fuel injection pipe (PN: 0292737310, diameter 6 mm). Safran had also a larger 10mm fuel pipe (PN: 0292730350, diameter 10 mm) that was authorized for installation on the engine. Both fuel pipes were tested on the accident engine.

The engine was placed on a test stand and equipped with MicroVib accelerometers on the starter-generator and the fuel pipe injection union mount B-nut. Three engine test runs were performed to measure engine vibrations using an exemplar starter-generator and the accident starter-generator in combination with both a standard fuel pipe and the alternative larger diameter fuel pipe. Table 2 shows the results of the test runs.


Table 2 – Vibration results of engine test runs, cpm=cycles per minute, ips=inches per second (velocity)

The engine tests revealed that the accident starter-generator imparted a vibration into the engine that excited both models of fuel pipes; however, the global vibration experienced by the engine and measured by the engine test stand remained below the criteria for unacceptable gas generator or power turbine unbalance.

Engine Tests at Marignane & Bordes, France

Further testing of the accident starter-generator was performed during ground runs on a EC130T2 helicopter at Airbus Helicopters, Marignane, France, and on an Arriel 2D engine placed on a test bench at Safran Helicopter Engines at Bordes, France. Representatives from the BEA attended the tests for the accident starter-generator and exemplar Arriel 2D along with the technical advisers from Airbus Helicopters, Safran Helicopter Engines and Thales. During those tests, the starter-generator was fitted with 3 axis-accelerometers and the fuel pipe was fitted with strain gauges. Vibration and stress recordings were made while the engine performed several running cycles on the ground (due to the installed measurement equipment, no flight tests were performed). During these ground tests, recordings were made with exemplar starter-generators and, for the tests in Bordes, recordings were also made with three test bench shuttle starter-generators of slightly different design (amendments G and H) which exhibited various levels of radial play on the input shaft.

When operating with the accident starter-generator, the tests showed the presence of an abnormal nonsynchronous vibration that was not visible with the exemplar starter-generators. The abnormal non-synchronous vibration exhibited erratic fluctuations and jumps (between runs and occasionally within some of the runs) between 110 Hz and 190 Hz (equivalent to 6,600 cpm to 11,400 cpm); appeared neither linked to the gas generator rotational speed nor to the electrical collection and was not a direct consequence of usual mass unbalance or misalignment; and came close at times to the 1st mode resonance frequency of the fuel pipes (about 130Hz for the standard pipe and about 175Hz for the larger diameter pipe which can vary slightly due to manufacturing and material tolerances and internal fuel flow during operation).

Despite the tests' limitations (no test flights and no test of the broken fuel pipe), the erratic abnormal non-synchronous vibration came close but did not exactly match the resonance frequency of the standard pipe. Nevertheless, during the Bordes tests, recordings with the accident starter-generator showed a maximum stress level on the standard diameter pipe at 128 Hz (7,680 cpm) that reached 87% of the maximum acceptable limit. Regarding the larger diameter pipe, the maximum stress level was obtained at 175 Hz (10,500 cpm) and reached 31% of the maximum acceptable limit with the accident starter-generator, and 132% of the maximum acceptable limit on a starter-generator of an amendment H design.

Engine Disassembly Examination

The NTSB IIC and technical representatives from Safran HE and Airbus Helicopters, and a party representative from Air Methods Corporation, convened at the Safran facility in Grand Prairie, Texas, to disassemble and examine the engine. No anomalies were identified during the visual examination of the engine equipment.

Fuel Pipe Fracture Examination

The fuel pipe fracture was examined by the NTSB Materials Laboratory. The tube was fractured at the flared end. A close view of the fracture surface on the tube portion revealed fractographic ratchet marks and crack arrest marks consistent with reverse bending fatigue fracture initiation at two diametrically opposite positions on the outside surface of the tube. There was no evidence of static loading due to installation of the pipe on the engine.

Safran HE, with the oversight of the BEA, performed a dimensional check of the accident fuel pipe. The pipe was installed on the control jig that was used to dimensionally check newly-manufactured fuel pipes. The fuel pipe was found to fit and remain in contact with the jig blocks except at the fractured end, where a 2-mm gap was observed. The maximum allowable gap for a newly-manufactured pipe is 1-mm. This measurement was performed after the end portion of the pipe was cut to allow for the deep examination of the fracture surfaces. Moreover, on-site photos taken on the wreckage showed that the pipe was still aligned with the union's port when the B-nut was removed. Safran engineers concluded that the dimensional checks of the pipe showed that its diameter and thickness were within specification; the flared end's radius was slightly above tolerance while remaining smaller than the contact surface with the sleeve; and no other significant discrepancies were noted. Safran engineers also created a finite element model of the pipe and determined that the crack initiation locations matched the maximum stress areas on the pipes's first vibration mode.

Safran HE provided fuel pipe reliability information stating that the type of fuel pipe installed on this engine had been installed on 4,500 Arriel 2 engines and had accumulated 14.2 million flight hours. No instances of a similar type of failure had been documented for the entire history of this fuel pipe design.

Starter-Generator Examination

The BEA provided oversight for the examination of the accident starter-generator at the Thales (original equipment manufacturer) manufacturing plant in Meru, France. A visual examination of the starter-generator revealed play between the armature shaft and the flange. The brush wear was measured using a brush gauge; all the brushes were worn to the beginning of the yellow area. The starter-generator was placed on a test bench and fitted with accelerometers to measure vibration. Tests were performed at 8,000 rpm and 12,000 rpm, each with 0A load and 50A load. Peak vibration levels were identified at the 8,000-rpm speed, no load, with a vibration of 130 Hz and 88.01 m/s2, and at 12,000 rpm, 50A load, vibration at 134 Hz and 112.17 m/s2 acceleration. Additionally, lower vibrations were identified at the 2nd and 3rd harmonic frequencies. Displacement of the armature shaft laterally to the centerline was measured twice, revealing 0.98 mm and 0.81 mm displacement values. The front bearing of the starter-generator was found coated with a black oil/grease-like substance. The front bearing outer race exhibited signatures consistent with fretting. Measurement of the front bearing support revealed wear, with a difference between 0.650 and 0.680 mm from measured diameter to nominal diameter.

Thales provided service reliability information of similar starter-generators. Between January 1, 2010 and June 30, 2015, Thales received 881 starter-generators, 624 for scheduled repair, and 257 for unscheduled repair (all amendment variants). Thales focused on 2016-2017 time period for starter-generator removals of three operators: Blue Hawaiian Helicopters, Air Methods Corporation, and US Coast Guard. The total number of starter-generators for this grouping that Thales repaired was 111: 98 pre-amendment J, and 13 amendment J variants. Thales found drive flange out-of-tolerance conditions for 23 pre-amendment J, and 7 amendment J variants.

Thales reported to the BEA on February 23, 2017, that as of January 2016, a quality check of the front bearing diameter had been conducted for all starter-generator assemblies being produced. This check was not in place before January 2016.

Starter-Generator Magnetic Seal Examination

Safran HE, under the supervision of the BEA, examined the accident starter-generator magnetic seal, the interface between the starter-generator and the engine, which, had been found coated with a black oil-like substance. BEA analysis of the black-oil deposit identified the substance as a mixture of engine oil (O-156) and Loctite 8012 (lubricating moly paste for the bearing assembly). The magnetic seal graphite support ring was found in satisfactory condition, the friction ring was found properly installed, and the O-rings were in good condition. No discrepancies were identified that explained the magnetic seal leak, however, the magnetic seal had been subjected to abnormally high vibrations originating from the starter-generator during operation.

Starter-Generator Maintenance

The Airbus Helicopters maintenance manual for the EC130 T2 specifies the required inspections and maintenance for the installed starter-generator. For starter-generators with part numbers 524-030 and 524-031 periodic inspections were required at 600 and 1,200 flight hour intervals. The 600-hour inspection involved examination of the starter's general condition, electrical connections, and measuring brush wear in accordance with AMM 24-31-00 and CMM 80.19.02. The 1,200-hour inspection specified replacement of the brushes if the brushes are measured in the yellow range using the measuring tool. If any of the brushes were measured in the red range then the starter-generator was to be repaired. The operator's maintenance program did not require starter-generator brush replacement when brushes were in the yellow ranger, however, the operator monitored and measured brush wear much more frequently than what the manufacturer recommended.

Blue Hawaiian Helicopters maintains their EC-130's utilizing a FAA approved aircraft inspection program (AAIP). Specified under the Blue Hawaiian Helicopters AAIP the starter-generator was inspected every 150 flight hours. The starter-generator is removed from the engine and checked for its general condition, terminal lug covers, and security clamp. The brushes are inspected and measured in accordance with CMM 80.19.02. If brush length is in the red (higher wear than in the yellow range), when utilizing the measuring tool, the starter is to be replaced. Additionally, the electrical power system is inspected during the AAIP 600-hour inspection. The 600-hour inspection did not involve removal of the starter-generator or measurement of the brushes. However, normally the 600-hour inspection coincides with a 150-hour inspection.

The Safran Helicopter Engines maintenance manual for the Arriel 2D specifies to visually examine the engine and the engine floor for leakage every 15 flight hours or every 7 days (whichever comes first). The accident helicopter performed 15 flight hours in 2.5 days before the accident and no leaks were reported. In particular, no leaks were reported at the engine / starter-generator clamp interface which is not designed to be liquid-tight.

Blue Hawaiian Fleet Wide Survey of Starter-Generator Maintenance

The Blue Hawaiian Helicopters director of maintenance collected maintenance records for the 6 months preceding the accident that involved starter-generator (PN: 524-031 amendment J) replacement. Blue Hawaiian Helicopters and other Air Methods operations that flew EC-130T2 helicopters had removed 25 starter-generators for routine maintenance, three of which were identified as having lateral play of the splined armature shaft. As specific measurement of the play was not required before the accident, the extent of the reported play could not be determined.

ADDITIONAL INFORMATION

Airbus Information Notice and Service Bulletins

Airbus issued an Information Notice on April 13, 2017, reminding operators to inspect starter-generators for oil seepage, to remove the starter-generator when inspecting the brushes, and to examine for anomalies such as radial play of the drive shaft.

Airbus Helicopters issued 3 service bulletins on March 12, 2018, for the AS350, AS550, and EC130 model helicopters (SB N° AS350-24.00.32, SB N° AS550-24.00.11, SBN° EC130-24.00.08). The service bulletin directs the inspection of the starter-generator (PN: 524-030 & 524-031) before either 450 flight hours of the starter-generator or within 150 hours if the starter-generator had more than 300 total flight hours. The inspection involves measurement of armature radial play, and for an oil leak on the mechanical interface of the starter-generator and the engine and requests a return of information of the observation.

The results of the information gathered from these inspections regarding the concerned fleet resulted in the issuing of new service bulletins on December 24, 2018, (SB N° AS350- 05.00.95, SB N° AS550-05.00.71 and SB N° EC130-05-30) requesting a 300 hours periodic inspection of the starter-generator. These service bulletins have latterly been cancelled as this inspection is now incorporated in the Airbus Helicopters maintenance program.

Airbus Helicopters issued a Safety Information Notice in December 2019, reminding the operators of the correct use of seats and restraint systems to minimize the risk of injury.

Pilot Information

Certificate: Commercial
Age: 56, Male
Airplane Rating(s): None
Seat Occupied: Left
Other Aircraft Rating(s): Helicopter
Restraint Used:
Instrument Rating(s): Helicopter
Second Pilot Present: No
Instructor Rating(s): None
Toxicology Performed: No
Medical Certification: Class 2 With Waivers/Limitations
Last FAA Medical Exam: 11/30/2015
Occupational Pilot: Yes
Last Flight Review or Equivalent: 11/13/2015
Flight Time: 4550 hours (Total, all aircraft), 2500 hours (Total, this make and model)

Aircraft and Owner/Operator Information

Aircraft Make: AIRBUS
Registration: N11VQ
Model/Series: EC130 T2
Aircraft Category: Helicopter
Year of Manufacture: 2015
Amateur Built: No
Airworthiness Certificate: Normal
Serial Number: 8070
Landing Gear Type: Skid
Seats: 7
Date/Type of Last Inspection: 01/06/2016, AAIP
Certified Max Gross Wt.: 5512 lbs
Time Since Last Inspection: 66 Hours
Engines: 1 Turbo Shaft
Airframe Total Time: 692.7 Hours at time of accident
Engine Manufacturer: Safran Helicopter Engines
ELT: C126 installed, activated
Engine Model/Series: Arriel 2D
Registered Owner: Nevada Helicopter Leasing LLC
Rated Power: 952 hp
Operator: Blue Hawaiian
Operating Certificate(s) Held: On-demand Air Taxi (135)

Meteorological Information and Flight Plan

Conditions at Accident Site: Visual Conditions
Condition of Light: Day
Observation Facility, Elevation: PHLI, 152 ft msl
Distance from Accident Site: 24 Nautical Miles
Observation Time: 1453 HST
Direction from Accident Site: 304°
Lowest Cloud Condition: Clear
Visibility: 10 Miles
Lowest Ceiling: None
Visibility (RVR):
Wind Speed/Gusts: 3 knots /
Turbulence Type Forecast/Actual: / None
Wind Direction: 330°
Turbulence Severity Forecast/Actual: / N/A
Altimeter Setting: 30.02 inches Hg
Temperature/Dew Point: 22°C / 17°C
Precipitation and Obscuration: No Obscuration; No Precipitation
Departure Point: Lihue, HI (PHLI)
Type of Flight Plan Filed: Company VFR
Destination: Lihue, HI (PHLI)
Type of Clearance: VFR
Departure Time: 1400 HST
Type of Airspace: Class G

Airport Information

Airport: Lihue (PHLI)
Runway Surface Type:
Airport Elevation: 153 ft
Runway Surface Condition: Unknown
Runway Used: N/A
IFR Approach: None
Runway Length/Width:
VFR Approach/Landing: Forced Landing

Wreckage and Impact Information

Crew Injuries: 1 Serious
Aircraft Damage: Substantial
Passenger Injuries: 6 Serious
Aircraft Fire: None
Ground Injuries: N/A
Aircraft Explosion: None
Total Injuries: 7 Serious
Latitude, Longitude: 22.173056, -159.658056








NTSB Identification: WPR16LA055 
Scheduled 14 CFR Part 135: Air Taxi & Commuter
Accident occurred Sunday, January 17, 2016 in Hanalei, HI
Aircraft: AIRBUS EC130, registration: N11VQ
Injuries: 4 Serious, 3 Minor.

This is preliminary information, subject to change, and may contain errors. Any errors in this report will be corrected when the final report has been completed. NTSB investigators may not have traveled in support of this investigation and used data provided by various sources to prepare this aircraft accident report.

On January 17, 2016, about 1430 Hawaii standard time, an Airbus EC130 T2, N11VQ, landed hard on a beach 2 miles west of Hanalei on the Hawaiian island of Kauai after a reported loss of engine power. The commercial pilot and 2 passengers sustained minor injuries, and 4 passengers were seriously injured. The helicopter sustained substantial damage to the tailboom and airframe. The helicopter was registered to Nevada Helicopter Leasing LLC, operated by Blue Hawaiian Helicopters under the provisions of 14 Code of Federal Regulations, Part 135, and was conducting an air tour flight at the time of the accident. Visual meteorological conditions prevailed for the flight, and a company visual flight plan had been filed. The local flight originated in Lihue at 1406.

The pilot reported that he was about 1/4 mile off shore northwest of Honopu Sea Arch at 1,300 feet mean sea level (msl) when he heard the low rotor rpm aural warning horn. He immediately entered an autorotation and turned towards the beach. He transmitted over the radio that he had an engine failure. As he approached the shoreline he made a right turn to the south and landed hard on the beach. He applied the rotor brake to slow the rotor, and at that time he noted that the engine was not running. The passengers began to exit and he pulled the engine fuel cutoff.

Self-made engineer builds yet another aircraft

BUT CAN IT FLY? George Tumuti with his latest plane, which he built using scrap metal bought with his car-washing savings.




A self-made engineer in Waguthu village, Kiambaa constituency, has built an aircraft to get sponsorship to pursue his engineering dream.

In 2013, George Tumuti built a microlight plane using scrap metal and got recognition for a significant contribution and dedicated service to the community by the Kiambu government.

He said he would build a more advanced plane.

“With the microlight plane, which on a good runway could fly 20 metres high, I had hoped to get sponsorship to join college, but I didn’t. So I went back to the drawing board as it is my dream to be an engineer and a pilot,” Tumuti said.

The 23-year-old, who is interning with General Motors, said he cannot take his plane for a test flight because the government thinks it is too risky and has prohibited it.

Tumuti dropped out of the Kenya Polytechnic University College for lack of fees.

“If I could get sponsorship I know I can become an engineer. It has been my dream since I was a small boy,” he said.

Tumuti used scrap metal, motorcycle and vehicles’ parts and local materials bought using savings from his car wash business.

Joseph Itibu, Tumuti’s father, said he was amazed.

“We quarrelled often as I did not understand him, but I must support him. He has proved he has the brains and can go far if given the chance and finances,” he said.

Story and photo:  http://www.the-star.co.ke

Piper PA30, N68X: Accident occurred January 18, 2016 in Dublin, Laurens County, Georgia

http://registry.faa.gov/N68X 

NTSB Identification: ERA16LA092 
14 CFR Part 91: General Aviation
Accident occurred Monday, January 18, 2016 in Dublin, GA
Aircraft: PIPER PA 30, registration: N68X
Injuries: 2 Uninjured.

This is preliminary information, subject to change, and may contain errors. Any errors in this report will be corrected when the final report has been completed. NTSB investigators may not have traveled in support of this investigation and used data provided by various sources to prepare this aircraft accident report.

On January 18, 2016 about 1145 eastern standard time, a Piper PA-30, N68X, was substantially damaged when the landing gear collapsed during landing rollout at W H "Bud" Barron Airport (DBN), Dublin, Georgia. The flight instructor and private pilot were not injured. Visual meteorological conditions prevailed, and no flight plan was filed for the local instructional flight conducted under the provisions of Title 14 Code of Federal Regulations Part 91.

According to the private pilot, he was receiving multi-engine flight instruction from the flight instructor when the accident occurred. The weather was windy but clear with the temperature in the low 40s [Fahrenheit]. They departed DBN at approximately 1015 after allowing about 15 minutes runtime for the engines' temperatures to warm up. Their intent was to remain in the local area to perform practice maneuvers in preparation for his check ride for a multi-engine rating. Due to severe low-level turbulence, they operated at an altitude from 4,500 to 5,500 feet above mean sea level.

They performed several maneuvers including 30- and 45-degree banking turns while maintaining assigned altitude, low-power stalls and recovery while maintaining heading, power-on stalls and recovery while maintaining heading, single engine power failure recognition and flight control procedures including emergency engine failure checklist application. They also practiced single-engine flight with the landing gear retracted and extended, as well as with the wing flaps retracted and extended. After 45 to 50 minutes of flight, they performed a practice emergency descent from 4,500 feet msl to pattern altitude with the landing gear and wing flaps extended, and the throttles at idle. They then entered the traffic pattern for runway 32 on the left downwind leg at approximately 1,200 feet msl and performed a normal full stop landing.

After taxiing back to beginning of runway 32, they then reviewed procedures for a short field obstacle takeoff, and for a short field obstacle landing. The short field takeoff was normal per the Piper PA-30 POH recommendations, with the landing gear retracted upon indication of a positive climb, followed by retraction of the wing flaps from the takeoff position. After takeoff, they once again joined the traffic pattern for another landing. When they were at 1,200 feet on the downwind leg of the traffic pattern, power was reduced to approximately 20 inches of manifold pressure on both engines to slow the airplane below 150 mph for landing gear extension. Abeam the numbers for runway 32, they completed the pre-landing checklist and ensured that the fuel pumps were on, landing gear extended to the down and locked position, mixtures set to full rich, and power reduced to 24 inches of manifold pressure. The private pilot further reduced power to approximately 15 inches of manifold pressure while turning on to the left base leg of the traffic pattern. He then verbally called out the "GUMP" check (gear, undercarriage, mixture, props) with acknowledgment from his flight instructor, and then turned onto the final at approximately 800 feet msl, with his speed at 110 mph to compensate for the wind gusts.

When he crossed the threshold of runway 32 at approximately 400 feet and 100 mph, he further reduced power and closed the throttles. He then descended towards the runway, and commenced his flare as the airspeed decreased. All indications of touchdown were normal with weight on wheels, for approximately 50 yards or so when it felt as if the aircraft was "shimmying," followed shortly thereafter by the "sandpaper sound" of the propellers striking the runway. The airplane then settled completely on its belly and slid to right of centerline where it came to a stop. The flight instructor said he smelled smoke so the private pilot moved the fuel tank valves to off position and they both departed the airplane.

Examination of the runway and wreckage revealed that approximately 2,000 feet from the approach end of runway 32, propeller strike marks were visible that corresponded to the location of the left and right propellers on the accident airplane. At the approximately the same location scrape marks were also visible on the runway centerline which corresponded the airplane's belly. The scrape and propeller strike marks continued from this point, approximately 700 feet to the location where the airplane came to rest.

In order to examine the airplane, it was moved to a hangar on the airport and placed on aircraft jacks. Examination of the two-blade propellers revealed that the tip on one propeller blade of both the left and right propellers was bent forward with the tip of the other blade of each propeller bent aft. Examination of the airplane's fuselage revealed that its belly was substantially damaged from the aft end of the nose landing gear wheel well, aft through the mid-section of the fuselage, with numerous areas that were ground down into the frames and longerons. The landing gear system was also examined and no damage to the landing gear system or wheels was observed. A complete operational check of the landing gear system was performed and the landing gear was extended and retracted several times with no discrepancies noted.

According to Federal Aviation Administration (FAA) and pilot records, the flight instructor held an airline transport pilot certificate with a rating for airplane multi-engine land, commercial privileges for airplane airplane single-engine land, and a type rating for the BE-300. He also possessed a flight instructor certificate with ratings for airplane single-engine, multi-engine, and instrument airplane. He also held a ground instructor certificate with ratings for advanced and instrument, and a control tower operator certificate. His most recent FAA second-class medical certificate was issued on August 11, 2015. He reported that he had accrued 5,001total hours of flight experience, 25 of which were in the accident airplane make and model.

According to FAA and pilot records, the private pilot held a private pilot certificate with a rating for airplane single-engine land. His most recent FAA third-class medical certificate was issued on February 21, 2014. He reported that he had accrued 689 total hours of flight experience, 10 of which were in the accident airplane make and model.

According to FAA and airplane maintenance records, the airplane was manufactured in 1963. The airplane's most recent annual inspection was completed on October 23, 2015. At the time of the inspection, the airplane had accrued approximately 5459.7 total hours of operation, and the engines had accrued approximately 1834.5 total hours of operation since major overhaul.

FAA Flight Standards District Office:  FAA Atlanta FSDO-11

Pegasus Quik, G-CBYE: Fatal accident occurred July 03, 2015 at Enstone Airfield, Oxfordshire, UK

Investigators suggest microlight which crashed into Enstone Airfield was carrying too much weight during flight

Investigators suggest microlight trike which crashed into Enstone Airfield was carrying too much weight during flight.



A microlight trike that crashed last July, killing its pilot and passenger, might have been carrying too much weight, it has been discovered.

Keith Poulton, 59, and Dr. Connor Morris, known as Edward, aged 62 and from Witney, died on July 3 when the light aircraft they were flying crash-landed at Enstone Airfield, smashed through a fence and collided with a lorry trailer.

The Air Accidents Investigation Branch (AAIB) last week released its report on the investigation into the crash.

The report said it was thought the aircraft was carrying 30kg more weight than advised.

Owner of Enstone Flying Club Paul Fowler said he knew “experienced pilot” Dr Morris for 10 years through flying together.

Mr. Fowler said: “ I have known Ed for a long time through flying.

“It was a very sad and tragic accident and a great loss.”

Mr. Fowler did not wish to comment on the contents of the report, nor did Dr Morris’s family.

Investigators for the AAIB stated the maximum take off weight for the aircraft was 409kg, with the maximum weight limit for each seat being 110kg.

Pilots are required to carry out weight checks before flying the plane, to check it does not exceed the limit. The pilot, Dr Morris, weighed 83.8kg (11st 2lbs) and the passenger Mr. Poulton weighed 118.1kg or 18st 5lbs.

There was also a bag of equipment weighing 4.2kg and the helmets and headsets which weighed 3.4kg. A total of 38.5 litres of fuel also weighed 27.8kg.

At the time of the accident the aircraft weighed 442.3kg, about 33kg above the recommended weight.

The report stated: “The data provided by the aircraft designer indicated the distance available from the point of touchdown may have been insufficient to bring the overweight aircraft to a complete halt.

“However, even if the aircraft had not been over-loaded, there was insufficient distance remaining to take off again from the point at which power was reapplied.

“The extra weight is considered to have been a contributory factor to the accident.”

The AAIB pointed out that Dr. Morris, while being “experienced” as a pilot, had not flown a microlight with an instructor since gaining his licence in 2006 and his Microlight Rating had lapsed.

Dr. Morris worked at the Nuffield Health Centre in Welch Way from 1984 to 2012.

As well as his clinical work, he was also a community volunteer for organisations including Witney Talking News.

Story and photo: http://www.oxfordmail.co.uk

Overran the runway, Enstone Airfield, 3 July 2015.

Summary: 

The aircraft made an approach towards the upwind end of a grass runway at Enstone Airfield. It touched down approximately 145 m before the end of the runway and, after rolling for approximately 80 m, the power was increased. The aircraft, which was overweight, remained on the ground and veered to the right passing through a fence and colliding with a vehicle trailer parked beside other equipment, close to the end of the runway. The pilot and his passenger both suffered fatal injuries. The pilot had not flown with an instructor in a flex-wing microlight since gaining his license in 2006 and his Microlight Rating had lapsed. 

Accident report: https://www.gov.uk