Friday, February 26, 2016

General aviation in America’s breadbasket

ALAN CORR
Nebraska View


Here in Nebraska, our land is our livelihood — farms and ranches cover 92 percent of the state’s total land area. Agricultural production in Nebraska accounts for $22.6 billion of the gross state product and supports nearly a quarter of the state’s workforce.

Because our farms and ranches are so expansive, small aircraft help us to get food on the table for our own families and for citizens around us in our country, and often, the world.

As an adjunct faculty member in the University of Nebraska-Lincoln’s Institute of Agriculture and Natural Resources, I have seen first hand the importance of aviation in supporting our nation’s food production.

There are many unrecognized but important components of our economy and aviation is one of them, particularly when it comes to agriculture. With hundreds of aerial applicator businesses throughout the state, most of them small and family-owned, and 81 airports, aviation helps businesses and farms to keep our economy moving.

A turbine ag aircraft is able to service up to 4,000 acres per day, and on average, protects nearly 50,000 acres of cropland and pastureland throughout the year, depending on weather and crop conditions. In total, the state’s fleet of crop dusters can protect more than 6 million acres throughout the year. When crop pests are present, the crop protection provided by ag aircraft will likely result in at least a 10-percent yield increase over an untreated crop. Without the aerial spraying industry in Nebraska, it would take an additional 600,000 crop acres to maintain Nebraska’s current crop production levels.

In addition, many other businesses rely on small planes and their community airports. General aviation in Nebraska contributes $1.2 billion to the state’s total economic output and supports 7,900 jobs in the state. Business owners who need to travel quickly and to destinations not served by commercial airlines use general aviation to meet with customers and suppliers, transport equipment, and reach new markets.

General aviation doesn’t just benefit businesses. It connects communities in need. Emergency responders, firefighters and law enforcement use aviation to keep us safe. Medical services depend on general aviation to reach rural communities, deliver blood and platelets, and ensure that every citizen can get the care they need.

Yet as much as we understand the importance of small aircraft and airports, there has been a growing and concerning push under way to privatize our air traffic control system, which would take public control of our airspace from Congress and put it in the hands of an entity controlled by big, commercial interests.

This would be a potential death blow for rural America. Congressional oversight is necessary to ensure that America’s air system works for everyone and that rural communities continue to have access to this important public benefit.

Nebraska’s farms are the heart of our local and national economy. Let’s stand up for them by protecting general aviation and access to our air system for rural communities.

Alan Corr is an emeritus Extension educator for irrigation management at the University of Nebraska-Lincoln, education director and Operation Safe analyst for the Nebraska Aviation Trades Association, and has worked with the aerial application industry across Nebraska for several years.

Read the original article on Kearney Hub.

Maya Island Air, Cessna 208B Grand Caravan, V3-HHA: Incident occurred February 25, 2016 at Belize City Municipal Airport

Maya Island Air Cessna Flight two, twenty-two with seven passengers on board was forced to abort its flight and make an emergency landing at the Municipal Airstrip just a couple minutes after it took off en route to San Pedro on Thursday evening.

We’ve been following the reports since Thursday night, but were only able to make confirmation this morning as investigators from the Department of Civil Aviation examined the aircraft behind a cluster of hangars. 

According to officials from Maya Island Air via press release, the aircraft operated by Chief Pilot Ali Urbina took off at five-forty-five P.M., at which time Urbina detected a “power performance anomaly and decided to abort his flight.”  His return was clocked in at five-forty-eight P.M. 

While the release from Maya Island Air doesn’t say so, News Five has confirmed that Urbina was forced to land on the incomplete runway which is under construction and lined with heavy machinery including steamrollers.

Late this evening we managed to reach Chief Operations Officer of the Department of Civil Aviation Nigel Carter via phone.  

On the Phone: Nigel Carter, Chief Operations Officer

“Yesterday at around 6:35 in the evening we received reports of an aircraft that made an emergency landing at the Municipal Airport. The aircraft’s nationality registration marks are V3-HHA or what we would commonly refer to as Hotel Hotel Alpha. The aircraft is a Cessna 208 operated by Maya Island Air. It carried one pilot and seven passengers. It is understood that the aircraft departed from the Municipal Airport en route to San Pedro and experienced what is assumed to be some difficulty with the engine. The aircraft then…the pilot elected to land the aircraft at the Municipal Airport. He made the landing and there were no injuries or damage to the aircraft reported. We have since yesterday been working with the operator in an investigation of the incident. We will first evaluate the severity of the incident, and based on that it will dictate the steps that we need to take in the execution of the investigation. We will take a look at the aircraft itself and if necessary we will work with other agencies in determining what might be the root cause of the incident.”

The release from Maya Island Air states that the seven passengers boarded another flight and were in San Pedro before six-thirty. 

Unofficially, we’re told that the aircraft experienced what is called a runaway engine, meaning that the engine revs uncontrollably and red-lines.  Again unofficially, we are told that when that happens, an immediate landing is imperative since a runaway engine will fail completely in a matter of minutes.

Read the original article on Channel5Belize.

Local Air Wisconsin flight enters restricted airspace near U.S. Capitol

An Air Wisconsin plane taking off from Reagan National Airport on Friday morning entered prohibited airspace near the U.S. Capitol and briefly failed to communicate with air traffic controllers, according to authorities.

A spokeswoman for the U.S. Capitol Police said officials raised their security level “out of an abundance of caution.” The Capitol was not put in lockdown, the spokeswoman said, and the alert was lifted once communication with the pilot was established.


The Federal Aviation Administration said the incident occurred about 10:55 a.m. when Flight 3803, headed to Toronto, Canada, took off from Runway 1.


An FAA spokesman could not say what action was taken. The Air Wisconsin Internet site shows the flight arriving in Toronto 31 minutes late.


Officials from Air Wisconsin did not return calls seeking comment. The FAA said the incident is under investigation.


Read the original article on The Washington Post.

Exclusive: Bailout would cut Bombardier's CSeries jet stake, taking it off books



A proposed Canadian government bailout of Bombardier Inc's new CSeries jet manufacturing program would reduce the company's stake in the money-losing aircraft, taking it off the plane maker's books and boosting results in the short-term, two sources familiar with the matter said.

The federal government is considering a deal that would give Canada, the Quebec government and Bombardier each a one-third stake in the CSeries, which would be carved out as a separate joint venture with its own board, ‎said the sources who spoke on condition of anonymity because the talks are confidential. Currently, Bombardier controls 50.5 percent of the CSeries and Quebec 49.5 percent.

Federal officials familiar with the situation stress it is too early to say whether a separate CSeries board would be part of a bailout of Bombardier. Prime Minister Justin Trudeau has said his Liberal Party government would announce a decision before the federal budget on March 22.

Such a deal would allow Montreal-based Bombardier to alter the way it accounts for the CSeries business, which is costing at least $5.4 billion to develop and launch and which the company doesn’t expect to generate returns for another four years or more.

The proposed structure would have a positive effect on the parent company's cash flow and earnings per share for the next three to four years, said one of the sources.

The company has forecast 2016 revenue of $16.5 billion to $17.5 billion. Those figures bake in anticipated revenue from about 10 CSeries jet deliveries this year, according to one analyst. The loss of revenue because of deconsolidation would be more than offset by a reduction in CSeries costs and its cash burn rate in the parent company's accounts.

Canada is leaning toward matching Quebec's $1 billion CSeries injection of funds through a deal that could give the federal and provincial governments joint majority control of the 100-150 seat jet program. The first of the jets, the smaller version, is entering service in 2016 after years of delays and cost overruns.

New jet programs typically take years to sell and deliver enough planes to break even and recover sunk development costs.

CASH DRAIN

The federal government is not expected to invest directly in Bombardier itself, as opposed to the CSeries program, and there is no expected change to the company's dual class structure that favors the founding Bombardier-Beaudoin family, both sources said. Within the government, there are some concerns about the parent company's shareholding structure, which gives the family a roughly 54 percent voting stake, said a person familiar with Ottawa’s approach. The founding family has pushed back against any changes to the company’s governance, he said.

A key member of the family, Bombardier’s previous Chief Executive Pierre Beaudoin, launched three different plane programs at about the same time and the resulting draining of the company's cash is a major reason for its current problems.

The investment model, proposed by Quebec and supported by Bombardier, would give the federal and provincial governments a combined four seats - provided Canada matches the province's $1 billion investment - on the seven person CSeries board, Reuters reported on Wednesday.

Bombardier itself would only be able to nominate three of the seats, putting the company's representatives in a minority.

On Thursday, Quebec Transport Minister Jacques Daoust confirmed the Reuters story during an interview on Canada's RDI television.

“If we had a new player joining us, we could imagine having seven board seats,” Daoust said. “The new partner and us would control the company. This is certainly a scenario that is being explored now, because we couldn’t imagine investing two-thirds of the funds and having a minority on the decision-making front.”

Quebec has argued that the governments' majority position on the CSeries board should assuage federal concerns over the company's governance.

The governments would act as shareholders and not participate in the day-to-day operations of the plane program, one of the sources said. The deal would also allow Bombardier to buy back the governments' shares in the CSeries at a later date, as is already the case with the agreement between Bombardier and Quebec.

"The last thing you want are governments to run the program," said the second source. A spokeswoman for Bombardier declined to comment.

Bombardier received a boost in February when the company secured its first order in 16 months. That was for up to 75 CSeries jets to be supplied to Air Canada.

Bombardier has faced fierce competition from plane-making rivals Boeing Co and Airbus Group SE which have adapted new engines to their respective narrow-body jets. That has helped them compete with the fuel-efficient CSeries.

They have also been able to undercut Bombardier's pricing by discounting their older Airbus A320 and Boeing 737 models, which are late in their life cycles and can be built at a comparatively lower cost.

Read the original article on Reuters.

Beechcraft B200 Super King Air, Gilleland Aviation, N52SZ: Fatal accident occurred October 30, 2014 in Wichita, Kansas

NTSB Identification: CEN15FA034 
14 CFR Part 91: General Aviation
Accident occurred Thursday, October 30, 2014 in Wichita, KS
Probable Cause Approval Date: 03/01/2016
Aircraft: RAYTHEON AIRCRAFT COMPANY B200, registration: N52SZ
Injuries: 4 Fatal, 2 Serious, 4 Minor.

NTSB investigators either traveled in support of this investigation or conducted a significant amount of investigative work without any travel, and used data obtained from various sources to prepare this aircraft accident report.

The airline transport pilot was departing for a repositioning flight. During the initial climb, the pilot declared an emergency and stated that the airplane "lost the left engine." The airplane climbed to about 120 ft above ground level, and witnesses reported seeing it in a left turn with the landing gear extended. The airplane continued turning left and descended into a building on the airfield. A postimpact fired ensued and consumed a majority of the airplane. 

Postaccident examinations of the airplane, engines, and propellers did not reveal any anomalies that would have precluded normal operation. Neither propeller was feathered before impact. Both engines exhibited multiple internal damage signatures consistent with engine operation at impact. Engine performance calculations using the preimpact propeller blade angles (derived from witness marks on the preload plates) and sound spectrum analysis revealed that the left engine was likely producing low to moderate power and that the right engine was likely producing moderate to high power when the airplane struck the building. A sudden, uncommanded engine power loss without flameout can result from a fuel control unit failure or a loose compressor discharge pressure (P3) line; thermal damage prevented a full assessment of the fuel control units and P3 lines. Although the left engine was producing some power at the time of the accident, the investigation could not rule out the possibility that a sudden left engine power loss, consistent with the pilot's report, occurred.

A sideslip thrust and rudder study determined that, during the last second of the flight, the airplane had a nose-left sideslip angle of 29°. It is likely that the pilot applied substantial left rudder input at the end of the flight. Because the airplane's rudder boost system was destroyed, the investigation could not determine if the system was on or working properly during the accident flight. Based on the available evidence, it is likely that the pilot failed to maintain lateral control of the airplane after he reported a problem with the left engine. The evidence also indicates that the pilot did not follow the emergency procedures for an engine failure during takeoff, which included retracting the landing gear and feathering the propeller.

Although the pilot had a history of anxiety and depression, which he was treating with medication that he had not reported to the Federal Aviation Administration, analysis of the pilot's autopsy and medical records found no evidence suggesting that either his medical conditions or the drugs he was taking to treat them contributed to his inability to safely control the airplane in an emergency situation.

The National Transportation Safety Board determines the probable cause(s) of this accident as follows:
The pilot's failure to maintain lateral control of the airplane after a reduction in left engine power and his application of inappropriate rudder input. Contributing to the accident was the pilot's failure to follow the emergency procedures for an engine failure during takeoff. Also contributing to the accident was the left engine power reduction for reasons that could not be determined because a postaccident examination did not reveal any anomalies that would have precluded normal operation and thermal damage precluded a complete examination.


WICHITA, Kan-- A National Transportation Safety Board report indicates security cameras captured the final seconds of a flight that ended when a plane crashed into Wichita's FlightSafety International building. The October, 30, 2014 accident killed the pilot and three people inside the building.

THE NTSB report shows the pilot radioed he "lost the left engine" seconds before the King Air B200 hit the building.

The report said airport surveillance video cameras captured the last nine seconds of the flight. "The cameras showed that the airplane was about 120 foot angle when it impacted the FSI building, and a postimpact explosion and fire ensued", the report said.

The cockpit voice recorder determined the time duration from liftoff to building impact was 26 seconds.

The report also said maintenance was performed on the plane eight days before the crash. A review found "no maintenance record discrepancies that would have affected the operation or performance of the airplane".

Original article can be found here: http://www.kake.com

NTSB factual report: http://media.graytvinc.com







NTSB Identification: CEN15FA034
14 CFR Part 91: General Aviation
Accident occurred Thursday, October 30, 2014 in Wichita, KS
Aircraft: RAYTHEON AIRCRAFT COMPANY B200, registration: N52SZ
Injuries: 4 Fatal, 2 Serious, 4 Minor.

NTSB investigators either traveled in support of this investigation or conducted a significant amount of investigative work without any travel, and used data obtained from various sources to prepare this aircraft accident report.

HISTORY OF FLIGHT 

On October 30, 2014, at 0948 central daylight time, a Raytheon Aircraft Company King Air B200 airplane, N52SZ, impacted the FlightSafety International (FSI) building located on the airport infield during initial climb from Wichita Mid-Continent Airport (ICT), Wichita, Kansas. The airline transport pilot, who was the sole occupant, was fatally injured, and the airplane was destroyed. Three building occupants were fatally injured, two occupants sustained serious injuries, and four occupants sustained minor injuries. The airplane was registered to and operated by Gilleland Aviation, Inc., Georgetown, Texas, under the provisions of 14 Code of Federal Regulations Part 91 as a ferry flight. Visual meteorological conditions prevailed, and an instrument flight rules (IFR) flight plan was filed. The flight was originating from ICT at the time of the accident and was en route to Mena Intermountain Municipal Airport (MEZ), Mena, Arkansas. 

The ICT air traffic controllers stated that the accident flight was cleared for takeoff on runway 1R and instructed to fly the runway heading. After becoming airborne, the pilot declared an emergency and stated that the airplane "lost the left engine." The airplane then entered a shallow left turn, continued turning left, and then descended into a building. A controller called aircraft rescue and firefighting on the "crash phone" just before impact. The controllers observed flames and then black smoke coming from the accident site. 

Witnesses in the Cessna Service Center building on the east side of runway 1R also observed the airplane departing runway 1R. They indicated that the airplane then porpoised several times before making a left turn. The airplane continued the left turn, barely cleared the top of a hangar on the west side of runway 1R, and then descended into a building. The witnesses reported that the landing gear was extended and that they could not clearly hear the sound of the engines. The airplane's altitude appeared to be less than 150 ft above ground level (agl).

Airport surveillance video cameras captured the last 9 seconds of the flight. The videos showed that the airplane was turning left and in a nose-left sideslip as it overflew a hangar. The cameras showed that the airplane was about 120 ft agl when it impacted the FSI building, and a postimpact explosion and fire ensued.



PERSONNEL INFORMATION 

The pilot, age 53, held an airline transport pilot (ATP) certificate with ratings for airplane single-engine and multiengine land. On August 4, 2014, he was issued a Federal Aviation Administration (FAA) second-class medical certificate with the limitation that he must wear corrective lenses. 

The pilot's flight time logbook was not located during the investigation. At the time of his August 2014 medical examination, he reported a total flight time of 3,067 hours with 200 hours in the preceding 6 months. A review of the pilot's flight training records from FSI, dated September 18, 2014, revealed that he had accumulated 3,139 total flight hours, 2,843 hours of which were in multiengine airplanes. The King Air B200 did not require a type rating.

From September 4 to 19, 2014, the pilot received Beechcraft King Air 300 series initial training at FSI, Wichita, Kansas. The training was specifically for the King Air 350 Proline 21 model and included 58.5 ground training hours, 12 briefing hours, 14 pilot-flying simulator hours, and 12 pilot-not-flying hours. During the course, the pilot reviewed and completed the required emergency procedures. The pilot satisfactorily completed the course with an examination that included 2.5 hours written/oral examination time and 2.2 simulator flying hours. 

On September 19, 2014, the pilot was issued an FAA ATP temporary airman certificate with the following ratings and limitations: airplane multiengine land ratings for Beechcraft (BE)-300, BE-400, Cessna (CE)-525, Dassault Falcon (DA)-10, Learjet (LR)-45, LR-60, LR-JET, Mitsubishi (MU)-300 airplanes; second-in-command privileges only for BE-400, CE-525, DA-10, LR-45, LR-60, LR-JET, and MU-300 airplanes; and private pilot privileges for airplane single-engine land.

AIRCRAFT INFORMATION

The accident airplane was bought by Gilleland Aviation, Inc., Georgetown, Texas, on October 28, 2014. The King Air B200 was a six-seat, low-wing, multiengine airplane manufactured in 2000. The airplane was powered by two Pratt & Whitney PT6A-42 turboprop engines that each drove a Hartzell four-bladed, hydraulically operated, constant-speed propeller with full feathering and reversing capabilities. The propeller blade angle settings for this installation were -11.0° ± 0.5° reverse, 18.2° ± 0.1° low, and 85.8° ± 0.5° feather.

On October 30, 2014, at 0740, the airplane was refueled at ICT by Signature Flight Support. The two outboard fuel tanks (usable 193-gallon capacity each) were reported to have been filled to capacity. The two auxiliary fuel tanks (usable 79-gallon capacity each) were reported to be empty. The fueling receipt noted that 57 gallons of Jet A fuel were added to the left main tank and that 53 gallons of Jet A fuel were added to the right main tank.

Maintenance
A review of the airplane maintenance records found that major scheduled maintenance was completed at Hawker Beechcraft Services, Wichita, Kansas, on October 22, 2014. The maintenance included left and right engine hot-section inspections and an overhaul of the right propeller. At the time of the accident, the airplane had accumulated 1.4 hours and 2 cycles since it was released to service on October 22, 2014. The review found no maintenance record discrepancies that would have affected the operation or performance of the airplane.

Postmaintenance Test Flights 

During the October 22, 2014, Hawker Beechcraft postmaintenance test flight, the following discrepancies were noted: 

• The left throttle lever was ahead of the right by about 1/4 of the lever knob. • The cabin environmental system pressurization leak rate was high. All other systems functioned normally. The engine interturbine temperature (ITT) gauge indications were split, indicating that one of the engines was operating more efficiently than the other; however, both engines were able to achieve maximum power per the pilot's operating handbook (POH) performance charts with no temperature ITT exceedance.

Maintenance was performed to address the throttle matching and cabin environmental system discrepancies, and a second maintenance test flight was conducted on October 27, 2014. During the flight, it was noted that the throttle lever mismatch was corrected. The environmental system bleed air valves (flow packs) pressurization leak rates were acceptable, although one was weaker than the other when tested independently. No other anomalies were noted. 

Following the flight, maintenance personnel confirmed that the left flow pack output was higher than the right. Both sides of the system passed maintenance manual and ground operational checks. To better understand these findings, the airplane owner agreed that the left and right environmental system flow packs, electronic controllers, and thermistors should be swapped. 




Rudder Boost System

The airplane was equipped with a rudder boost system to aid the pilot in maintaining directional control in the event of an engine failure or a large variation of power between the engines. The rudder cable system incorporated two pneumatic rudder-boosting servos that would actuate the cables to provide rudder pressure to help compensate for asymmetrical thrust. During operation, a differential pressure valve would accept bleed air pressure from each engine. When the pressure varied between the bleed air systems, the shuttle in the differential pressure valve would move toward the low pressure side. As the pressure differential reached a preset tolerance, a switch on the low pressure side would close, activating the rudder boost system. The system was designed only to help compensate for asymmetrical thrust; the pilot was to accomplish appropriate trimming. 

The system was controlled by a toggle switch, placarded "RUDDER BOOST – OFF" and located on the pedestal below the rudder trim wheel. The switch was to be turned on before flight. A preflight check of the system could be performed during the run-up by retarding the power on one engine to idle and advancing power on the opposite engine until the power difference between the engines was great enough to close the switch that activates the rudder boost system. Movement of the appropriate rudder pedal (left engine idling, right rudder pedal would move forward) would be noted when the switch closed, indicating that the system was functioning properly for low engine power on that side. The check was to be repeated with opposite power settings to check for movement of the opposite rudder pedal. Moving either or both of the bleed air valve switches in the copilot's subpanel to the "INSTR & ENVIR OFF" position would disengage the rudder boost system.

Autofeathering System

The airplane was equipped with an autofeathering system that provided a means of automatically feathering the propeller in the event of an engine failure. The system was armed using a switch on the pilot's subpanel placarded "AUTOFEATHER – ARM – OFF – TEST." With the switch in the "ARM" position and both power levers above about 90 percent N1, the green L and R AUTOFEATHER annunciators located on the caution/advisory panel would illuminate, indicating that the system was armed. If either power lever was not above about 90 percent N1, the system would be disarmed, and neither annunciator would be illuminated. When the system was armed and the torque on a failing engine dropped below about 410 ft-lbs, the operative engine's autofeather system would be disarmed. When the torque on the failing engine dropped below about 260 ft-lbs, the oil was dumped from the servo, and the feathering spring and counterweights feathered the propeller. 

For King Air B200 airplanes equipped with Hartzell propellers, the propeller autofeather system must be operable for all flights and be armed for takeoff, climb, approach, and landing. A preflight system test, as described in the King Air POH, Section IV, "NORMAL PROCEDURES," was required. Since an engine would not actually be shut down during a test, the AUTOFEATHER annunciator for the engine being tested would cycle on and off as the torque oscillated above and below the 260 ft-lbs setting.

Emergency Procedure

The King Air B200 POH outlined an Engine Failure During Takeoff (at or above V1) Takeoff Continued procedure, which stated, in part, the following:

1. Power –> maximum allowable

2. Airspeed –> maintain (takeoff speed or above)

3. Landing gear –> up 

Note: If the autofeather system…is being used, do not retard the failed engine power lever until the autofeather system has completely stopped the propeller rotation. To do so will deactivate the autofeather circuit and prevent automatic feathering. 

4. Propeller lever (inoperative engine) –> feather (or verify that propeller is feathered if autofeather is installed)

METEOROLOGICAL INFORMATION 

At 0953, the automated weather observation at ICT reported wind from 350 degrees and 16 knots, visibility of 10 miles, a few clouds at 15,000 ft, temperature 59° F, dew point 37° F, and altimeter setting 30.12 inches of Mercury. 

COMMUNICATIONS

The following is a chronological summary of the communications between the accident pilot and the ICT air traffic controllers.

0938 The pilot requested an IFR clearance to MEZ. Clearance Delivery read the clearance to the pilot, and the pilot read back the clearance correctly.

0940 The pilot requested taxi clearance with the automatic terminal information service (ATIS). Ground Control issued a taxi clearance to runway 1R at Echo 3 intersection via taxiways Alpha 5, Alpha, Bravo, Echo. The pilot read back the instructions correctly. 

0941 Ground Control reverified that the accident pilot had ATIS Hotel.

0942 The pilot advised he had to perform a quick run-up and asked Ground Control for a location to complete the run-up. Ground Control advised him to proceed to the end of the taxiway or to the Echo 3 intersection. 

0947 The pilot requested and was cleared for takeoff by Local Control on runway heading. The pilot read back the instructions correctly.

0948 The pilot declared an emergency and advised that he "lost the left engine."

FLIGHT RECORDERS

Cockpit Voice Recorder

The airplane was equipped with a Fairchild Model A100S cockpit voice recorder (CVR). The unit was removed from the wreckage and sent to the National Transportation Safety Board (NTSB) Vehicle Recorder Laboratory for download. A timeline generated from the CVR recording determined that the time duration from liftoff to building impact was about 26 seconds. 

Nonvolatile Memory

The airplane was equipped with a Sandel ST3400 terrain awareness and warning system and radio magnetic indicator unit. This unit was retained and examined by the NTSB Vehicle Recorder Laboratory. The examination revealed that the unit sustained severe thermal damage and that the nonvolatile memory contents were destroyed; therefore, no data were available for recovery. 

WRECKAGE AND IMPACT INFORMATION

General

The accident site was located at latitude 37° 39.592 N, longitude 97° 25.490 W, at an elevation of 1,363 ft mean sea level. The airplane struck the northeast corner of the FSI building, which housed several flight simulators. A large simulator room on the north end was the point of impact and sustained most of the structural and fire damage. The simulator room was about two stories high, about 198 ft long (east-west), and about 42 ft deep (north-south). Most of the airplane wreckage was distributed from the northeast corner toward the southwest corner of the room and remained on the roof of the simulator room and the attached buildings. 

A postimpact fired ensued and consumed a majority of the airplane. The left engine, propeller, and left main landing gear were found just inside the building on the ground level. A majority of the left outboard wing, flap, and aileron were found at the foot of the building's exterior east wall. The fuselage, tail section, cockpit, right engine, and right main landing gear were located on the conjoined buildings' rooftops. The cockpit, instrument panels, right engine, and right landing gear strut were located about 160 ft from the initial impact point to the south on the roof of the simulator room. The right engine and propeller came to rest next to the cockpit. 

The cabin area of the fuselage and empennage came to rest inverted on the lower, west roof. The cabin area was mostly consumed by the postimpact fire. Portions of the wing center section and all of the tail section were located to the south on the lower roof of the conjoined building. The right wing had separated and came to rest on the roof of another attached building about 120 ft from the initial impact point. A separated portion of a propeller blade was found near the right wing. A separated propeller blade tip was found in a parking lot about 200 ft northeast from the initial impact point. The tail section sustained severe thermal damage, but remained recognizable. The horizontal stabilizers remained attached to the vertical stabilizer with the elevators attached. The elevator trim tabs remained attached to their respective elevator. The vertical stabilizer remained attached to the aft fuselage with the rudder attached. The rudder trim tab remained attached to the rudder. 

The left main landing gear was found extended with the down-lock latched into place. The structure of the right main landing gear was not intact. The strut, wheel, and tire of the nose gear assembly were found in the parking lot on the north side of the building. Witness and video evidence, which is discussed in the "ADDITIONAL INFORMATION" section of this report, confirmed that the landing gear were extended before impact.

One of the four rudder cables in the tail section had the ball swage fitting still attached. The other three cables (one rudder and two elevators) were separated with rusty coloration at the separation point. The three cables were stiff 3 to 9 inches from the fracture surface, consistent with high-temperature oxidation and separation. The rest of the three cables remained flexible, which was typical of a control cable. 

Rudder flight control continuity was established from the rudder to the flight control cables. One cable terminated at the aft fuselage in a thermal separation, and the other cable terminated at a more forward position at a cable end. 

Down elevator control continuity was confirmed from the elevator surface to the aft fuselage. The up elevator aft bell crank segment was separated with the flight control cable attached. Both cables terminated at the aft fuselage in thermal separations. 

A secondary examination of the flight control systems was conducted at a secure storage facility. The primary and secondary flight control cables were all accounted for from the cockpit to each respective flight control surface with cable separations that exhibited signatures consistent with thermal separation, tensile overload, and/or being cut during recovery. 

Flap Actuators

The only flap actuator observed was the outboard left flap actuator, and the position equated to about 10° extended. A secondary examination of the flap switch handle determined that it was in the UP detent.

The flaps had three positions: UP, APPROACH, and DOWN. UP was 0°, APPROACH was 14° (+ or - 1°), and DOWN was 35° (+1°/-2°). According to the POH, the flaps could be set to UP or APPROACH during takeoff. Any of the three flap positions could be selected by moving the flap switch handle up or down to the selected position indicated on the pedestal. The flaps could not be stopped in between any of the three positions. 

Trim Actuators

The rudder trim actuator position equated to greater than 15° tab trailing edge left (rudder right, nose right). The left and right elevator trim actuator positions equated to 0° trim. The right aileron trim actuator position equated to about 9° tab trailing edge up (right wing up). 

Rudder Boost and Autofeathering Systems

The rudder boost system, autofeathering system, and their respective cockpit controls were mostly consumed by the postimpact fire. Due to the extensive thermal damage, an examination of the systems could not be accomplished. 

Powerplants

The engines and propellers were relocated to a secure hangar where airframe components were removed, and the propellers were separated from the engines. 

Engine teardown examinations were performed from November 3 to 5, 2014, at a Pratt & Whitney service center. Although the engine inlet housings, gearbox cases, and the accessory housings and tubing were severely fire-damaged, the core engines were intact and could be fully evaluated. No evidence of preimpact failure was found. Both engine compressors exhibited impact damage characteristic of foreign object damage. Both engines' gas producer and power turbine rotor gas path components displayed circumferential friction, rub, and scoring damage characteristic of damage that occurs when normal operating clearances between rotating and stationary components are momentarily lost as the engine experiences abnormal axial and radial loading during an impact sequence. The left engine power turbine shaft was separated torsionally, consistent with the sudden stoppage of the propeller (blade strike) while the power turbine shaft continued to rotate.

The left engine fuel pump and fuel control housings were thermally destroyed; examination of the remaining (steel) engine fuel system and propeller governor system components and tubing connections recovered from the debris revealed no anomalies. The extensive thermal damage prevented full assessment of the fuel metering system, including the fuel control units and compressor discharge pressure lines (P3) to both engines. The left engine propeller governor and propeller overspeed governor were examined and tested at Woodward, Inc., Rockford, Illinois, with no preimpact anomalies noted. 

The propellers were examined in Wichita from November 1 to 3, 2014, and again at Hartzell Propellers, Inc., Piqua, Ohio, on September 9 and 10, 2015. Fracture features and dimensions of the recovered propeller blade segments identified them as the missing outboard sections of two consecutive left propeller blades. Both blades were separated chordwise and exhibited leading edge tearing signatures. The left propeller blade damage also included other leading edge dents and tearing, aft bending, and moderate twisting. All of the propeller damage was consistent with impact loading or postimpact fire. The right propeller blades were thermally consumed. 

All eight of the propeller preload plates displayed witness marks consistent with abnormal loading (blade strike). Although witness marks can reflect impact blade angles from later stages of the impact sequence, carefully analyzed preload plate witness marks can be a relatively reliable indication of the preimpact blade angle for this propeller design. The angular positions of the witness marks were used to approximate blade position at the time each impact occurred. The preload plate witness marks of the respective propellers indicated that the left propeller was likely at a 17° blade angle upon initial impact, and the right propeller was likely at a 22.5° blade angle upon initial impact.

Engine performance calculations using the derived blade angles and sound spectrum analysis-based findings (see the "CVR Sound Spectrum Analysis" section of this report) indicated that the left engine was likely operating but producing low to moderate power when the airplane struck the building and that the right engine was operating normally and producing moderate to high power when the airplane struck the building.

MEDICAL AND PATHOLOGICAL INFORMATION 

This 53-year-old pilot had been an air traffic controller for more than 20 years at ICT and retired in 2013. Since his first medical certification in 1980, the pilot had reported thyroid disease, hernias, and recurrent symptomatic kidney stones to the FAA. Beginning in 1997, he had episodes of anxiety and depression, which required intermittent treatment with medication. During the first episode, he was unable to work for a certain time. A second episode began in October 2013 and continued through the accident date. He did not report his recurrent anxiety or his use of buspirone and escitalopram to the FAA. However, he visited his primary care physician about 1 month before the accident and was noted to be stable on the medications. In addition, the pilot had a procedure to treat kidney stones in 2013 that he did not report to the FAA. 

On November 3, 2014, the Regional Forensic Science Center, Sedgwick County, Kansas, performed an autopsy on the pilot. The cause of death was determined to be thermal injuries and smoke inhalation and the manner of death was determined to be an accident. According to the autopsy report, a thin plastic medical catheter was identified in the pilot's pelvis, but it was not further described in the report. The Regional Forensic Science Center also conducted toxicology testing of the pilot's heart blood, which identified carboxyhemoglobin at 39 percent, but no other tested for substances were found.

Toxicology testing performed by the Bioaeronautical Research Laboratory at the FAA's Civil Aerospace Medical Institute identified buspirone and citalopram and its metabolite n-desmethylcitalopram in the pilot's heart blood and urine. In addition, the carboxyhemoglobin was 35 percent; no ethanol, cyanide, or any other tested for substances were identified. Buspirone, also named BuSpar, is an anxiolytic prescription medication. Buspirone is different from other anxiolytics in that it has little, if any, typical anti-anxiety side effects, such as sedation and physical impairment, but it does carry a warning, "May impair mental and/or physical ability required for the performance of potentially hazardous tasks (e.g., driving, operating heavy machinery)." Citalopram is a prescription antidepressant, also named Celexa, which carries a warning, "May impair mental and/or physical ability required for the performance of potentially hazardous tasks (e.g., driving, operating heavy machinery)."

ADDITIONAL INFORMATION

Airport Surveillance Video Data

Airport surveillance videos, which captured the last 9 seconds of the flight, including an image of the airplane within 1 second of impact, was used to estimate the airplane's trajectory and speed. The estimations indicated that the airplane's groundspeed increased from 85 to 92 knots and that the descent rate increased from about 0 to 1,600 ft per minute just before impact. The airplane's altitude reached a maximum of about 120 ft agl before it descended into the building. 

Sideslip Thrust and Rudder Study

The NTSB conducted a sideslip thrust and rudder study based on information from the surveillance videos. This study evaluated the relationships between the airplane's sideslip angle, thrust differential, and rudder deflection. Calculations made using multiple rudder deflection angles showed that full right rudder deflection would have resulted in a sideslip angle near 0°, a neutral rudder would have resulted in an airplane sideslip angle between 14° and 19°, and a full left rudder deflection would have resulted in an airplane sideslip angle between 28° and 35° airplane nose left. Calculation of the airplane's sideslip angle as captured in the image of the airplane during the last second of flight showed that the airplane had a 29° nose-left sideslip, which would have required the application of a substantial left rudder input.

CVR Sound Spectrum Analysis 

A sound spectrum analysis was completed using harmonic signatures recorded on the CVR from the cockpit area microphone and an unconnected microphone jack. A graph of the harmonic signatures from the cockpit area microphone show signatures that likely represent the propeller blade tip sounds and propeller rpm diverging, consistent with one propeller rpm decreasing. 

A graph of harmonic signatures from the unconnected microphone jack revealed electrical noise signatures generated from the engines. At the beginning of the graph, these signatures (two for each engine) increased, corresponding to increasing engine rpm. Later, two of the signatures began to decrease, consistent with one engine's rpm decreasing.

Federal Aviation Administration Flight Standards District Office: FAA Wichita FSDO-64



 
Mark Goldstein: September 19, 2014 - "Received my first type rating in the BE350 and BE300 with an ATP today — at FlightSafety International Hawker Beechcraft Learning Center":














NTSB Identification: CEN15FA034
14 CFR Part 91: General Aviation
Accident occurred Thursday, October 30, 2014 in Wichita, KS
Aircraft: RAYTHEON AIRCRAFT COMPANY B200, registration: N52SZ
Injuries: 4 Fatal,2 Serious,4 Minor.

This is preliminary information, subject to change, and may contain errors. Any errors in this report will be corrected when the final report has been completed. NTSB investigators either traveled in support of this investigation or conducted a significant amount of investigative work without any travel, and used data obtained from various sources to prepare this aircraft accident report.

On October 30, 2014, at 0948 central daylight time, a Raytheon Aircraft Company King Air B200, N52SZ, impacted the Flight Safety International (FSI) building located on the airport after departure from the Wichita Mid-Continent Airport (KICT), Wichita, Kansas. The pilot, who was the sole occupant, was fatally injured and the airplane was destroyed. Three building occupants were fatally injured, 2 occupants sustained serious injuries and four occupants sustained minor injuries. The airplane was registered to and operated by Gilleland Aviation, Inc., Georgetown, Texas, under the provisions of 14 Code of Federal Regulations Part 91 as a business flight. Visual meteorological conditions prevailed and an instrument flight rules (IFR) flight plan was filed. The flight originated at 0947 and was en route to the Mena Intermountain Municipal Airport (KMEZ), Mena, Arkansas.

According to the air traffic control (ATC) recordings, at 0947:06, the airplane departed runway 1R and was instructed by the controller to fly runway heading. At 0948:17, the pilot declared an emergency and stated that he "lost the left engine."

According to witnesses on the ground, after the airplane departed runway 1R, a left turn was initiated and the airplane's altitude was estimated less than 150 feet above the ground. One witness observed the airplane shortly after it became airborne and heard a reduction in power on one engine before it entered the left turn. Another witness saw the airplane from about 20 yards away. He said the airplane was in a left turn and approached the hangars east of FSI, then the wings were level as it flew west toward FSI. The airplane's landing gear were "down and locked", the flaps were extended, the rudder was neutral, and the right engine was at full power. The witness did not see the left engine. The airplane then disappeared from his view and he heard the sound of an impact. Another witness observed the airplane in its final seconds before it impacted the FSI building. He said the airplane was on a heading of 240 degrees and was in a "gradual" descending left turn. He thought the airplane was going to land on the west runway, but then it collided with the northeast corner of the FSI building. The witness said the landing gear were extended and both propellers were rotating, but he could not determine at what power setting. He said the airplane's left engine struck the building first just below the roof line, followed by the outboard section of the left wing. When the wing impacted the building it separated and the airplane rolled to about 70 degrees bank angle. The nose of the airplane struck the roof of the building and the airplane slid for about 20-30 feet before the tail section came over the top of the airplane followed by a large explosion. A postimpact fire ensued.

Surveillance video from the surrounding buildings was obtained and will be reviewed.

The airplane was equipped with a Fairchild Model A100S cockpit voice recorder (CVR). The unit was removed from the wreckage and sent to the National Transportation Safety Board (NTSB) Vehicle Recorder Laboratory for download.

The airplane was equipped with two Sandel ST3400 Terrain Awareness and Warning System / Radio Magnetic Indicator (TAWS/RMI) units. These units were retained by the NTSB and will be examined for recorded flight data.

At 0953, the automated weather observation at KICT reported wind from 350 degrees and 16 knots, 10 miles of visibility, a few clouds at 15,000 feet, temperature 59° Fahrenheit (F), dew point 37° F, and altimeter setting 30.12 inches of mercury.

The wreckage has been retained for further examination.

Federal Aviation Administration Flight Standards District Office: FAA Wichita FSDO-64

Boeing Drops Bomber Pursuit: Boeing and partner Lockheed Martin had protested award of contract to Northrop Grumman



The Wall Street Journal 
By DOUG CAMERON
Updated Feb. 26, 2016 2:59 p.m. ET

Boeing Co. said Friday that it won’t pursue any further challenges following its loss to Northrop Grumman Corp. of a big contract to build new bombers for the U.S. Air Force.

The Government Accountability Office this month turned down the protest made by Boeing and partner Lockheed Martin Corp. who had alleged that the Air Force selection was “irreparably flawed” because of its treatment of cost and performance estimates submitted by the opposing bidders.

Boeing could have elected to sue the Pentagon over the award, the first part of an Air Force plan to build as many as 100 jets that would enter service from 2025.

“While we remain firmly convinced of the validity of the issues raised in our protest to the Government Accountability Office of the Long Range Strike-Bomber contract award to Northrop Grumman, the Boeing-Lockheed Martin team has decided not to pursue further challenges to that award, either through the GAO or in federal court,” Boeing said in a statement.

Air Force Secretary Deborah Lee James on Friday said the new bomber would be known as the B-21 and revealed the first image of the highly-classified design. She said airmen would be polled to give it a name.

Original article can be found here:  http://www.wsj.com

Cessna 170B, N2715C: Accident occurred February 25, 2016 in Enumclaw, King County, Washington

http://registry.faa.gov/N2715C 

NTSB Identification: GAA16CA138
14 CFR Part 91: General Aviation
Accident occurred Wednesday, February 24, 2016 in Enumclaw, WA
Probable Cause Approval Date: 05/03/2016
Aircraft: CESSNA 170, registration: N2715C
Injuries: 1 Uninjured.

NTSB investigators used data provided by various entities, including, but not limited to, the Federal Aviation Administration and/or the operator and did not travel in support of this investigation to prepare this aircraft accident report.

The pilot of a tailwheel equipped airplane reported that during the taxi after landing, he "applied the brakes to slow down further" and suddenly the airplane nosed over. He further reported that he recently replaced the 29 inch Alaska Bushwheels with smaller 6.00x6 tires. According to the pilot, this made the Cleveland double puck brakes "very sensitive." 

A postaccident examination revealed substantial damage to the right wing and vertical stabilizer. 

The pilot reported that there were no mechanical malfunctions or failures with the airplane that would have precluded normal operation.

The National Transportation Safety Board determines the probable cause(s) of this accident as follows:
The pilot's incorrect brake application during taxi, which resulted in a nose over.

Tri-Cities Regional Airport (KTRI) asking local cities for money

The Tri-Cities Regional Airport Authority is asking cities and counties to help pay for airfield site preparation to bring in economic development.

They are asking for the $2 million the FAA has in grant money, but has not been approved yet.

The grading cost for the south-side airfield is $15 million for 120 acres, but only 20 acres is ready to be built on now.

The new aerospace park would have ready site-pads, in hopes of bringing potential jobs to the area.

"The opportunity is before us now. As it was, we are looking at a probably 10 year process at least, and my fear is that opportunity would be lost in 10 years, so I would like to compress that time frame if we could," Airport Authority Commissioner David Tomita said.

According to Tomita, if the money isn't approved, the Airport Authority would wait for the next business cycle.

Original article can be found here: http://www.wcyb.com

Airplane Factory Sling, N288SL: Incident occurred October 25, 2018 at Carson City Airport (KCXP); incident occurred May 13, 2017 at Zamperini Field Airport (KTOA), California; incident occurred February 25, 2016 at Carson City Airport (KCXP), Nevada

Federal Aviation Administration / Flight Standards District Office; Reno, Nevada 

Veered off the runway, main gear tore off and prop strike.

https://registry.faa.gov/N288SL

Date: 25-OCT-18
Time: 17:35:00Z
Regis#: N288SL
Aircraft Make: AIRPLANE FACTORY LTD
Aircraft Model: THE SLING
Event Type: INCIDENT
Highest Injury: NONE
Aircraft Missing: No
Damage: MINOR
Activity: UNKNOWN
Flight Phase: LANDING (LDG)
Operation: 91
City: CARSON CITY
State: NEVADA

Federal Aviation Administration / Flight Standards District Office; Long Beach, California

Aircraft on landing, gear collapsed and struck the propeller.

Date: 13-MAY-17
Time: 00:30:00Z
Regis#: N288SL
Aircraft Make: AIRPLANE FACTORY
Aircraft Model: SLING
Event Type: INCIDENT
Highest Injury: NONE
Aircraft Missing: No
Damage: UNKNOWN
Activity: INSTRUCTION
Flight Phase: LANDING (LDG)
City: TORRANCE
State: CALIFORNIA

Federal Aviation Administration / Flight Standards District Office; Reno, Nevada 

During landing, aircraft went off the side of the runway.

Date: 25-FEB-16
Time: 21:30:00Z
Regis#: N288SL
Event Type: Accident
Highest Injury: None
Damage: Substantial
Flight Phase: LANDING (LDG)
City: CARSON CITY
State: Nevada