Thursday, April 12, 2018

Harmon Rocket, N275JS, owned and operated by the front-seat pilot: Fatal accident occurred January 17, 2017 near Corona Municipal Airport (KAJO), Riverside County, California


The National Transportation Safety Board did not travel to the scene of this accident.

Additional Participating Entities:
Federal Aviation Administration / Flight Standards District Office; Riverside, California
Textron Lycoming; Williamsport, Pennsylvania

Aviation Accident Final Report - National Transportation Safety Board: https://app.ntsb.gov/pdf 

Investigation Docket  - National Transportation Safety Board: https://dms.ntsb.gov/pubdms

Jeff C. Johnson: http://registry.faa.gov/N275JS



Aviation Accident Factual Report - National Transportation Safety Board

Location: Corona, CA
Accident Number: WPR17LA054
Date & Time: 01/17/2017, 1055 PST
Registration: N275JS
Aircraft: JOHNSON Harmon Rocket
Aircraft Damage: Substantial
Defining Event: Loss of engine power (total)
Injuries: 1 Fatal, 1 Serious
Flight Conducted Under: Part 91: General Aviation - Personal 

Analysis

The private pilot, who was the owner and builder of the experimental amateur-built airplane, and a commercial pilot departed on a local flight and performed three touch-and-go practice takeoffs and landings. During the fourth takeoff, after reaching about 300 ft above the ground, the engine experienced a total loss of power. The airplane made a right turn and collided with terrain about 1,650 ft from the end of the runway. The single-engine airplane was constructed about 7 years before the accident, at which time the private pilot installed a newly-overhauled engine. The airplane had accrued about 100 total hours of time in service. During postaccident examination, the engine would not start but was found to operate normally when a different fuel servo was installed.

The Bendix fuel servo, manufactured in 1977, was designed to meter fuel in relation to the volume of air being consumed by the engine. The metering is accomplished by air and fuel diaphragms inside the unit that are connected by a valve stem that has a regulator ball affixed at its end. A pressure differential across the air diaphragm results in the regulator ball unseating and providing the engine with more fuel. Complete disassembly of the accident fuel servo revealed that the regulator stem was separated from the regulator ball, which would prevent the ball from being able to unseat and would subsequently block fuel from entering the engine, resulting in fuel starvation.

The servo manufacturer stated that the servo's internal components appeared to be original, although those components were required to be replaced every 12 years. There were no maintenance records pertaining to the servo, but its appearance indicated it was likely never overhauled. The maintenance entry for the engine overhaul noted that the airplane was equipped with a "serviceable fuel servo," which, according to a representative from the maintenance facility that performed the overhaul, was likely determined by an engine test run. Because the airframe and engine were classified as amateur-built experimental, the overhaul criteria are not required for airworthiness; however, it is likely that the failure of the regulator valve stem and ball would not have occurred if the servo components had been replaced in accordance with manufacturer specifications.

Probable Cause and Findings

The National Transportation Safety Board determines the probable cause(s) of this accident to be:
A total loss of engine power during takeoff due to fuel starvation as a result of a failure of internal components of the fuel servo. 

Findings

Aircraft
Fuel control/carburetor - Failure (Cause)
Fuel control/carburetor - Not serviced/maintained (Cause)

Personnel issues
Replacement - Maintenance personnel

Factual Information

History of Flight

Takeoff
Fuel starvation
Loss of engine power (total) (Defining event)

On January 17, 2017, at 1055 Pacific standard time, an experimental amateur-built Harmon Rocket, N275JS, impacted terrain following a total loss of engine power during the initial climb from Corona Municipal Airport (AJO), Corona, California. The private pilot (seated in the front seat) was fatally injured, and the commercial pilot (seated in the rear seat) sustained serious injuries; the airplane sustained substantial damage. The airplane was owned and operated by the front-seat pilot under the provisions of Title 14 Code of Federal Regulations Part 91. Visual meteorological conditions prevailed, and no flight plan was filed for the local personal flight, which originated from AJO at 1026.

According to a Federal Aviation Administration (FAA) inspector, witnesses reported seeing the airplane initially take off from runway 25. The airplane then landed on runway 07 and immediately departed. After reaching 100-200 ft above ground level (agl), the engine experienced a loss of power. The airplane made a steep turn back toward the airport and collided with terrain, coming to rest on flat, soft vegetation on airport property. The accident site was located about 1,650 ft from the departure end of runway 07.

The airplane was equipped with an Advanced Flight Systems AF-4500sEF multifunction display (MFD) that recorded the flight and engine parameters in 5-second increments. The MFD revealed that the airplane departed at 1026 and circled over Lake Mathews, located about 9 miles to the southeast. Thereafter, the airplane returned to AJO and performed three practice takeoffs and landings on runway 25. The airplane then made a 360o turn to the west of the airport and performed a touch-and-go practice takeoff and landing on runway 07.

The airplane became airborne again at 1052:29 and climbed about 270 ft, to 770 ft mean sea level, at which point the fuel flow dropped from about 20 psi to less than 1 psi. The engine's rpm and exhaust gas temperature values drastically decreased, consistent with the engine experiencing a total loss of power. The airplane began a right turn about 1052:34 and collided with terrain at 1052:49. Figure 1 depicts the takeoff from runway 07 and the remainder of the flight.


Figure 1: Takeoff Prior to Accident

Pilot Information

Certificate: Private
Age: 61, Male
Airplane Rating(s): Multi-engine Land; Single-engine Land
Seat Occupied: Front
Other Aircraft Rating(s): Helicopter
Restraint Used:
Instrument Rating(s): None
Second Pilot Present: Yes
Instructor Rating(s): None
Toxicology Performed: No
Medical Certification: Class 3 Without Waivers/Limitations
Last FAA Medical Exam: 10/05/2015
Occupational Pilot: No
Last Flight Review or Equivalent:
Flight Time: (Estimated) 2000 hours (Total, all aircraft), 250 hours (Total, this make and model)

Flight Instructor Information

Certificate: Flight Instructor; Commercial
Age: 75, Male
Airplane Rating(s): Multi-engine Land; Single-engine Land; Single-engine Sea
Seat Occupied: Rear
Other Aircraft Rating(s): Helicopter
Restraint Used:  Unknown
Instrument Rating(s): Airplane
Second Pilot Present: Yes
Instructor Rating(s): Airplane Multi-engine; Airplane Single-engine
Toxicology Performed: No
Medical Certification: Class 3 With Waivers/Limitations
Last FAA Medical Exam: 01/09/2017
Occupational Pilot: No
Last Flight Review or Equivalent:
Flight Time:  (Estimated) 20000 hours (Total, all aircraft), 200 hours (Last 90 days, all aircraft)

Front-Seat Pilot

According to the FAA Airman and Medical records, the front-seat pilot, who was the owner and builder of the airplane, held a private pilot certificate with ratings for airplane single- and multi-engine land as well as rotorcraft. He also held a repairman experimental aircraft builder certificate. The pilot was issued an FAA third-class medical certificate in October 2015, with a limitation that he must wear glasses for near vision.

The pilot's most recent personal flight records were not recovered. On his most recent application for a medical certificate, the pilot reported 2,000 total hours of flight experience.

Aft-Seat Pilot

The commercial pilot, positioned in the aft seat, held ratings for airplane single- and multi-engine land; single-engine sea; rotorcraft-helicopter; and instrument airplane. Additionally, he held a flight instructor certificate with ratings for airplane single- and multi-engine. His most recent FAA third-class medical certificate was issued in January 2017 with a limitation that he must have glasses available for near vision.

The pilot's personal flight records were not recovered. On his last application for a medical certificate, the pilot reported 20,000 total hours of flight experience, of which 200 hours was accumulated in the previous 6 months.

It could not be determined who was acting as pilot-in-command at the time of the accident. A witness who knew the owner of the airplane stated that the owner didn't like to fly the airplane without another pilot on board. 

Aircraft and Owner/Operator Information

Aircraft Manufacturer: JOHNSON
Registration: N275JS
Model/Series: Harmon Rocket
Aircraft Category: Airplane
Year of Manufacture: 2010
Amateur Built: Yes
Airworthiness Certificate: Experimental
Serial Number: 0471
Landing Gear Type: Tailwheel
Seats: 2
Date/Type of Last Inspection: 10/17/2016, Condition
Certified Max Gross Wt.:
Time Since Last Inspection:
Engines:
Airframe Total Time:
Engine Manufacturer:
ELT:
Engine Model/Series:
Registered Owner: On file
Rated Power:
Operator: On file
Operating Certificate(s) Held:  None 

The Harmon Rocket was a low-wing, single-engine, experimental airplane, constructed by the owner and completed in 2010 with serial number 0471. The last condition inspection was recorded as being preformed by the owner in October 2016 in accordance with 14 CFR Part 43, appendix D. The entry noted a total time in service of 90.71 hours.

The airplane was equipped with a Lycoming IO-540-C4B5 engine, serial number L-5545-48, modified for experimental use only. The last annual inspection logbook entry in October 2016, noted a total engine time of 90.71 hours. The engine was overhauled by Aircraft Engine Specialists, Chandler, Arizona, in May 2009 and shipped to the pilot shortly thereafter for installation on the airplane.

Fuel System

The airplane's fuel system was a gravity-fed design in which fuel flowed from the metal tanks in the inboard section of each wing, through a selector valve, and continued to an electric fuel pump. From the pump, the fuel was routed to a transducer where it was plumbed through the firewall to the gascolator, which contained a fuel screen. Thereafter, the fuel was directed to the engine-driven fuel pump, and then routed under the left cylinders to the fuel servo (located at the forward bottom of the engine). From the servo, the fuel was routed between the Nos. 1 and 3 cylinders to the fuel distribution manifold (i.e., spider) and then to each cylinder's injector.

Fuel Servo

The fuel servo was a Bendix RSA-5AD1 (part number 2524213-1, serial number 6507-T), manufactured in 1977. The major components of the servo include the airflow section, the flow metering section, and the fuel regulator section. Together, these sections are designed to meter fuel in direct ratio to the volume of air being consumed by the engine (see Figure 2).

The regulator assembly contains an air diaphragm, a fuel diaphragm, and regulator stem that has a regulator ball affixed at the end. The air diaphragm senses impact air and compares it to venturi suction. The fuel diaphragm compares metered and unmetered fuel pressure. The diaphragms are connected by the regulator stem, which passes through the center body section of the regulator. The four chambers in the regulator section of the servo act in unison to cause the diaphragms to equalize and regulate the appropriate amount of fuel to the engine when the airflow is altered. When the engine is operating at a constant throttle setting, opposing forces of the fuel and air diaphragms cause the regulator valve stem to unseat to a specific position and an appropriate quantity of fuel is provided to the engine. As the throttle setting is increased, velocity of air through the venturi increases and pressure decreases within the suction side of the air chamber relative to the impact side. This creates a pressure differential across the air diaphragm and causes the regulator valve (ball at the end of the regulator stem) to move toward a more open position. As the regulator valve opens (ball moves off the seat), more fuel is provided to the engine. Once the pressure differential across the fuel diaphragm stabilizes and reaches a force in equilibrium with the air diaphragm, fuel flow is again stabilized.


Figure 2: Drawing of the Fuel Servo (showing regulator valve)


Maintenance

Several pictures of the accident servo were provided to a representative from Precision Airmotive, which purchased Bendix in 1988. He stated that the internal parts appeared to be original to the servo. He stated that all of the parts inside the regulator side are required replacement items at the time of overhaul. At the time of the servo's manufacture, the overhaul requirements were the same as the time between overhaul specified by the engine manufacturer. In 1991, Precision issued a calendar requirement, wherein the servo must be overhauled every 12 years. After overhaul, the servo should have a yellow data plate attached; the accident servo still had the original black data plate.

A review of maintenance records and invoices showed that the maintenance entry for the engine overhaul was dated May 2009 and noted that the airplane was equipped with a "serviceable fuel servo RSA-5AD1, pn 252-4213-1, sn 6507-T." A representative from the maintenance facility that performed the overhaul stated that "serviceability appears to have been determined by a functional check during the test run of the complete engine." There were no other maintenance records found regarding the servo. Because the airframe and engine were classified as amateur-built experimental, the overhaul criteria are not required for airworthiness.

Meteorological Information and Flight Plan

Conditions at Accident Site: Visual Conditions
Condition of Light: Day
Observation Facility, Elevation: AJO
Observation Time: 1856 UTC
Distance from Accident Site:
Direction from Accident Site:
Lowest Cloud Condition: Clear
Temperature/Dew Point: 17°C / -1°C
Lowest Ceiling: None
Visibility:  10 Miles
Wind Speed/Gusts, Direction: 6 knots, 110°
Visibility (RVR):
Altimeter Setting: 30.12 inches Hg
Visibility (RVV):
Precipitation and Obscuration: No Obscuration; No Precipitation
Departure Point: Corona, CA (AJO)
Type of Flight Plan Filed: None
Destination: Corona, CA (AJO)
Type of Clearance: None
Departure Time:  PST
Type of Airspace:

Airport Information

Airport: CORONA MUNI (AJO)
Runway Surface Type: N/A
Airport Elevation: 533 ft
Runway Surface Condition: Dry
Runway Used: N/A
IFR Approach: None
Runway Length/Width:
VFR Approach/Landing:  Forced Landing

Wreckage and Impact Information

Crew Injuries: 1 Fatal, 1 Serious
Aircraft Damage: Substantial
Passenger Injuries: N/A
Aircraft Fire: None
Ground Injuries: N/A
Aircraft Explosion: None
Total Injuries: 1 Fatal, 1 Serious
Latitude, Longitude:  33.895278, -117.594167 (est)

Medical And Pathological Information

The front-seat pilot survived the impact but died in the hospital later that day. The FAA Bioaeronautical Sciences Research Laboratory, Oklahoma City, Oklahoma, performed toxicological testing of specimens from the pilot. The testing revealed 0.006 (ug/ml, ug/g) tetrahydrocannabinol carboxylic acid (THC-COOH), an inactive metabolite of the primary psychoactive drug in marijuana tetrahydrocannabinol, detected in blood. Additionally, the report documented Midazolam, a potent anesthetic used during emergency treatment, consistent with postaccident medical intervention. The presence of trace amounts of THC-COOH in femoral blood is consistent with past use of marijuana, but blood testing did not identify the impairing drug marijuana. 

Tests And Research

The front seat had a control quadrant on the left side; the levers were all bent and folded over to the right. The throttle was positioned in a mid-range position and the fuel mixture and propeller controls were full forward.

Both wings remained attached to the airframe; the left fuel tank was breached. Fuel was recovered from both wing tanks. The fuel selector valve was found in the "OFF" position, but witnesses reported that first responders had repositioned the selector. The fuel selector was removed and, when operated, turned smoothly and displayed proper valve function. The fuel pump was removed and investigators connected it to a power source. The pump clicked and air egressed from the outlet. The transducer was removed and disassembled; the wheel was intact and no anomalies were found. The gascolator contained trace amounts of fuel and was free of debris. The upper housing of the fuel manifold was removed; there was no evidence of fuel and the diaphragm was dry.

The engine was mounted on a test stand and fuel was plumbed to the fuel pump; the fuel flowed freely and there was no evidence of blockage. Fuel was then plumbed to the fuel servo and investigators were unable to obtain flow to the outlet. The fuel servo was then removed and replaced with a similar model and fuel ran freely.

The fuel source was then attached to the mechanical fuel pump inlet and the system was reconnected with the exemplar servo. The propeller, damaged from the accident, was removed from the engine and a club propeller was installed. The engine was successfully started and ran for over 5 minutes at various power settings from idle to about 2,700 rpm. A magneto check was conducted on the left and right magnetos with a minimal rpm drop per magneto; no anomalies were found during the engine run.


Figure 3: Fuel Servo's Valve Stem Separated from the Regulator Ball


Fuel Servo

The fuel servo was completely disassembled. The safety wire on the regulator housing had a crimp with a stamp that read "AKB." Upon disassembly of the regulator, investigators noted that the valve stem was separated from the regulator valve (ball) as shown in Figure 3. The accident servo was reassembled and investigators affixed the exemplar servo's regulator section. A fuel source was connected and fuel flowed normally through the servo. The accident regulator section was installed on the exemplar servo and tested; the fuel would not flow. The complete examination notes with pictures are contained in the public docket for this accident.



NTSB Identification: WPR17LA054
14 CFR Part 91: General Aviation
Accident occurred Tuesday, January 17, 2017 in Corona, CA
Aircraft: JOHNSON Harmon Rocket, registration: N275JS
Injuries: 2 Fatal.

This is preliminary information, subject to change, and may contain errors. Any errors in this report will be corrected when the final report has been completed. NTSB investigators may not have traveled in support of this investigation and used data provided by various sources to prepare this aircraft accident report.

On January 17, 2017, about 1055 Pacific standard time, an experimental Johnson Harmon Rocket, N275JS, collided with terrain shortly after takeoff from Corona Municipal Airport, Corona, California. The private pilot, who was the owner and builder, was operating the airplane under the provisions of 14 CFR Part 91. The private pilot and certified flight instructor (CFI) were fatally injured; the airplane sustained substantial damage. The local personal flight originated from Corona about 1040. Visual meteorological conditions prevailed, and a flight plan had not been filed.

Witnesses reported observing the airplane initially taking off from runway 25. The airplane then landed on runway 07 and immediately departed. After reaching about 100 to 200 ft, the engine experienced a loss of power. The airplane made a steep turn back toward the airport and collided with terrain. The airplane came to rest on the airport property about 2,000 ft southwest of the end of the runway surface. The airplane was recovered for further examination.

North American Navion, N8849H: Fatal accident occurred November 10, 2016 (and) Incident occurred December 12, 2015 at Blairstown Airport (1N7), Warren County, New Jersey

Samuel Singer
~


The National Transportation Safety Board did not travel to the scene of this accident.

Additional Participating Entities:
Federal Aviation Administration / Flight Standards District Office; Allentown, Pennsylvania 
Continental Motors; Mobile, Alabama

Aviation Accident Final Report - National Transportation Safety Board: http://app.ntsb.gov/pdf 

Investigation Docket - National Transportation Safety Board: https://dms.ntsb.gov/pubdms

http://registry.faa.gov/N8849H


Aviation Accident Factual Report - National Transportation Safety Board

Location: Blairstown, NJ
Accident Number: ERA17LA042
Date & Time: 11/10/2016, 0915 EST
Registration: N8849H
Aircraft: NORTH AMERICAN NAVION
Aircraft Damage: Substantial
Defining Event: Loss of control on ground
Injuries: 1 Fatal
Flight Conducted Under: Part 91: General Aviation - Ferry 

Analysis

The private pilot had not flown the accident airplane for almost 1 year while it underwent repairs following a gear-up landing. The purpose of the accident flight was to ferry the airplane to a nearby airport to receive an annual inspection after completion of the repairs. On the morning of the accident, a mechanic taxied the airplane and performed an engine run-up; he did not note any anomalies. The pilot fueled the airplane and started the engine for the flight. Upon starting, the engine went immediately to full power, where it remained as the airplane taxied at high speed about 1,000 ft into a tree. Witnesses reported that the pilot was awake and alert after the accident; thus, there was no evidence of pilot incapacitation. Examination of the wreckage did not reveal any preimpact mechanical malfunctions or anomalies. Based on the positions of the throttle and mixture control, and the high speed taxi after engine start, it is likely that the pilot started the engine with the throttle lever accidently in the full-forward position. After the engine started, the pilot could have reduced or ceased engine power by retracting the throttle, retracting the mixture, or turning the magnetos off.

Probable Cause and Findings

The National Transportation Safety Board determines the probable cause(s) of this accident to be:
The pilot's improper engine start procedure, which resulted in a loss of control on the ground and collision with a tree. 

Findings

Aircraft
Surface speed/braking - Not attained/maintained (Cause)

Personnel issues
Aircraft control - Pilot (Cause)
Use of equip/system - Pilot (Cause)
Incorrect action selection - Pilot (Cause)

Factual Information

History of Flight

Standing-engine(s) start-up
Loss of control on ground (Defining event)

Taxi
Collision with terr/obj (non-CFIT)

On November 10, 2016, about 0915 eastern standard time, a North American Navion, N8849H, was substantially damaged following a loss of control during engine startup at Blairstown Airport (1N7), Blairstown, New Jersey. The private pilot was fatally injured. The airplane was operated by the pilot under the provisions of Title 14 Code of Federal Regulations Part 91. Visual meteorological conditions prevailed and no flight plan was filed for the planned personal flight to Capital City Airport (CXY), Harrisburg, Pennsylvania.

According to a mechanic who witnessed the accident, the pilot, who was the owner of the airplane, last flew the accident airplane in December 2015; it was damaged during a gear-up landing at 1N7. The airplane remained at the airport while the mechanic repaired the damage. The repairs were completed, and another pilot had planned to ferry the airplane to CXY for an annual inspection the day before the accident, but the flight was postponed due to poor weather. The other pilot was not available on the day of the accident, and the owner elected to fly the airplane to CXY himself.

On the morning of the accident, the mechanic taxied the airplane from the hangar to the fuel pump. During the taxi, he performed an engine run-up and did not notice any anomalies. The mechanic added that he had performed several run-ups while the airplane was at 1N7 and never experienced any anomalies with the throttle control or brakes. After fueling the airplane and completing a preflight inspection, the pilot started the engine and it went immediately to full power. The engine remained at full power and the airplane taxied about 1,000 ft at high speed into a tree. 

Pilot Information

Certificate: Private
Age: 73, Male
Airplane Rating(s): Single-engine Land
Seat Occupied: Left
Other Aircraft Rating(s): None
Restraint Used: Lap Only
Instrument Rating(s): None
Second Pilot Present: No
Instructor Rating(s): None
Toxicology Performed: Yes
Medical Certification: Class 3 With Waivers/Limitations
Last FAA Medical Exam: 01/30/2016
Occupational Pilot: No
Last Flight Review or Equivalent: 07/16/2015
Flight Time: 1478 hours (Total, all aircraft), 422 hours (Total, this make and model), 0 hours (Last 90 days, all aircraft), 0 hours (Last 30 days, all aircraft), 0 hours (Last 24 hours, all aircraft) 

The pilot, age 73, held a private pilot certificate with a rating for airplane single-engine land. His most recent Federal Aviation Administration (FAA) third-class medical certificate was issued on January 30, 2016. At that time, he reported a total flight experience of 1,445 hours. The most recent entry in the pilot's logbook was dated February 1, 2016. According to the logbook, the pilot had accrued a total flight experience of about 1,478 hours. The pilot reported 422 hours in the accident airplane make and model on his most recent insurance application. 

Aircraft and Owner/Operator Information

Aircraft Manufacturer: NORTH AMERICAN
Registration: N8849H
Model/Series: NAVION UNDESIGNATED
Aircraft Category: Airplane
Year of Manufacture: 1947
Amateur Built: No
Airworthiness Certificate: Normal
Serial Number: NAV-4-849
Landing Gear Type: Retractable - Tricycle
Seats: 4
Date/Type of Last Inspection: 08/21/2015, Annual
Certified Max Gross Wt.: 2850 lbs
Time Since Last Inspection: 14 Hours
Engines: 1 Reciprocating
Airframe Total Time: 2066 Hours at time of accident
Engine Manufacturer: Continental
ELT: C91A installed, activated, did not aid in locating accident
Engine Model/Series: IO-520-BB
Registered Owner: On file
Rated Power: 285 hp
Operator: On file
Operating Certificate(s) Held:  None

The four-seat, low-wing, retractable tricycle-gear airplane was manufactured in 1947. It was powered by a Continental IO-520, 285-horsepower engine, equipped with a constant-speed Hartzell propeller. The pilot purchased the airplane in 2009. Its most recent annual inspection was completed on August 21, 2015. At that time, the airframe had accumulated about 2,052 total hours of operation and the engine had accumulated about 417 hours since major overhaul. The airplane had been operated for about 14 hours between the time of the last inspection and the accident. 

Meteorological Information and Flight Plan

Conditions at Accident Site: Visual Conditions
Condition of Light: Day
Observation Facility, Elevation: MPO, 1915 ft msl
Observation Time: 0853 EST
Distance from Accident Site: 15 Nautical Miles
Direction from Accident Site: 305°
Lowest Cloud Condition: Few / 1200 ft agl
Temperature/Dew Point: 3°C / -1°C
Lowest Ceiling: None
Visibility:  10 Miles
Wind Speed/Gusts, Direction: 10 knots, 310°
Visibility (RVR):
Altimeter Setting: 30.02 inches Hg
Visibility (RVV):
Precipitation and Obscuration: No Obscuration; No Precipitation
Departure Point: Blairstown, NJ (1N7)
Type of Flight Plan Filed: None
Destination: Harrisburg, PA (CXY)
Type of Clearance: None
Departure Time:  EST
Type of Airspace: 

Pocono Mountains Municipal Airport (MPO), Mount Pocono, Pennsylvania, was located about 15 miles northwest of the accident site. The 0853 recorded weather at MPO included wind from 310° at 10 knots; visibility 10 miles; few clouds at 1,200 ft; temperature 3°C; dew point -1°C; altimeter 30.02 inches Hg. 

Airport Information

Airport: Blairstown (1N7)
Runway Surface Type: N/A
Airport Elevation: 371 ft
Runway Surface Condition:
Runway Used:  N/A
IFR Approach: None
Runway Length/Width:
VFR Approach/Landing:  None 



Wreckage and Impact Information

Crew Injuries: 1 Fatal
Aircraft Damage: Substantial
Passenger Injuries: N/A
Aircraft Fire: None
Ground Injuries: N/A
Aircraft Explosion: None
Total Injuries: 1 Fatal
Latitude, Longitude: 40.971111, -74.997500 (est) 

Examination of the wreckage by an FAA inspector revealed substantial damage to the wings and fuselage. The inspector noted that the throttle, propeller, and mixture controls were all in the full-forward position. Additionally, the engine had separated forward of the airframe during the collision with the tree.

The wreckage was examined again by an NTSB investigator after recovery. The propeller remained attached to the crankshaft and all three blades exhibited rotational signatures, such as torn blade tips, chordwise scrapes, and leading edge gouges. The throttle body/fuel metering unit was separated from the engine and remained attached to the induction system inlet and wye plenum, which were also separated from the airplane. The throttle and mixture control levers were fractured and their respective shafts were bent. The fractured control lever ends remained attached to the control cable rod ends. Examination of the throttle body/fuel metering unit revealed that the throttle lever was loose on the throttle control shaft; however, it was displaced and bent. No preaccident anomalies were noted with the unit.

The airplane was equipped with push-button Vernier throttle, mixture, and propeller controls. The propeller control knob was fractured and its cable was cut. Examination of the throttle control knob in the cockpit revealed that it was stuck in the full forward position and could not be pulled aft by depressing the push-button release. Examination of the mixture control revealed that it was also in the full forward position. Manual manipulation of the mixture control (both the push-button rapid adjustment mode, and the rotational fine adjustment mode) resulted in normal movement of the control knob with no anomalies noted. The throttle and mixture control knobs and cables were removed from the airplane and forwarded to the NTSB Materials Laboratory, Washington, DC.

Computed Tomography (CT) scanning of the throttle and mixture controls revealed that the outer sleeve within the throttle control did not appear to be fully seated within the knob, consistent with the throttle cable being pulled forward during engine separation in the accident sequence (for more information, see Computed Tomography Specialist's Factual Report in the public docket for this investigation). 

Medical And Pathological Information

The Morris County Medical Examiner, Morristown, New Jersey, performed an autopsy on the pilot. The autopsy report noted the cause of death as "multiple injuries."

Toxicological testing was performed on the pilot by the FAA Bioaeronautical Sciences Research Laboratory, Oklahoma City, Oklahoma. Review of the toxicology report revealed:

5.172 (ug/ml, ug/g) Ketamine detected in Urine
2.634 (ug/ml, ug/g) Ketamine detected in Blood (Cavity)
1.834 (ug/mL, ug/g) Norketamine detected in Urine
0.736 (ug/mL, ug/g) Norketamine detected in Blood (Cavity)
Midazolam detected in Blood (Cavity)
Naproxen detected in Urine

Katamine, Norketamin, and Midazolam were consistent with emergency medical treatment that the pilot received after the accident. Naproxen is a non-sedating analgesic and not considered impairing. Additionally, according to an ambulance report, the pilot was awake and alert after the accident. 


December 12, 2015 

Federal Aviation Administration / Flight Standards District Office; Allentown, Pennsylvania 

Aircraft landed gear up.

Date:     12-DEC-15
Time:     15:45:00Z
Regis#:     N8849H
Aircraft Make:     NORTH AMERICAN
Aircraft Model:     NAVION
Event Type:     Incident
Highest Injury:     None
Damage:     Minor
Flight Phase:     LANDING (LDG)
City:     BLAIRSTOWN
State:     New Jersey


























NTSB Identification: ERA17LA042
14 CFR Part 91: General Aviation
Accident occurred Thursday, November 10, 2016 in Blairstown, NJ
Aircraft: NORTH AMERICAN NAVION, registration: N8849H
Injuries: 1 Fatal.

This is preliminary information, subject to change, and may contain errors. Any errors in this report will be corrected when the final report has been completed. NTSB investigators may not have traveled in support of this investigation and used data provided by various sources to prepare this aircraft accident report.

On November 10, 2016, about 0915 eastern standard time, a North American Navion, N8849H, was substantially damaged following a loss of control during engine startup at Blairstown Airport (1N7), Blairstown, New Jersey. The private pilot was fatally injured. The airplane was operated by the private pilot as a personal flight conducted under the provisions of 14 Code of Federal Regulations Part 91. Visual meteorological conditions prevailed and no flight plan was filed for the planned flight to Capital City Airport (CXY), Harrisburg, Pennsylvania.

According to a mechanic who witnessed the accident, the pilot/owner last flew the accident airplane in December 2015, when it experienced a gear-up landing at 1N7. The airplane remained at the airport while the mechanic repaired damage from the gear-up landing. The repairs were completed and the airplane was supposed to be ferried to CXY for an annual inspection during the day prior to the accident. A different pilot was going to ferry the airplane, but poor weather postponed the flight. That pilot was not available on the day of the accident and the owner/pilot elected to fly the airplane to CXY himself.

During the morning of the accident, the mechanic taxied the airplane from the hangar to the fuel pump. During which, he performed an engine run-up and did not notice any anomalies with the airplane. The mechanic added that he had performed several run-ups while the airplane was at 1N7 and never experienced any anomalies with the throttle control or brakes. After fueling the airplane and completion of a preflight inspection, the pilot/owner started the engine and it went immediately to full power. The engine remained at full power and the airplane taxied at high speed into a tree.

Examination of the wreckage by a Federal Aviation Administration (FAA) inspector revealed substantial damage to the wings and fuselage. The inspector noted that the throttle, propeller, and mixture controls were all in the full forward position. The hydraulic and alternate air controls were in the retracted position. The wreckage was retained for further examination.

The pilot/owner, age 73, held a private pilot certificate with a rating for airplane single-engine land. His most recent FAA third-class medical certificate was issued on January 30, 2016. At that time, he reported a total flight experience of 1,445 hours.

The four-seat, low-wing, retractable tricycle-gear airplane, serial number NAV-4-849, was manufactured in 1947. It was powered by a Continental IO-520, 285-horsepower engine, equipped with a constant-speed Hartzell propeller. The pilot purchased the airplane in 2009. Its most recent annual inspection was completed on August 21, 2015. At that time, the airframe had accumulated approximately 2,052 total hours of operation and the engine had accumulated about 417 hours since major overhaul. The airplane had been operated for about 14 hours from the time of the last inspection, until the accident.

Piper PA-24 Comanche, N7386P: Accident occurred April 12, 2018 at New Braunfels Regional Airport (KBAZ), Guadalupe County, Texas

The National Transportation Safety Board did not travel to the scene of this accident.

Additional Participating Entity:
Federal Aviation Administration / Flight Standards District Office; San Antonio, Texas

Aviation Accident Preliminary Report - National Transportation Safety Board: https://app.ntsb.gov/pdf

Anderson Aviation: http://registry.faa.gov/N7386P

Aviation Accident Preliminary Report - National Transportation Safety Board

Location: New Braunfels, TX
Accident Number: CEN18LA138
Date & Time: 04/12/2018, 1500 CDT
Registration: N7386P
Aircraft: PIPER PA 24
Injuries: 2 None
Flight Conducted Under: Part 91: General Aviation - Instructional

On April 12, 2018, about 1500 central daylight time, a Piper PA-24 airplane, N7386P conducted a forced landing near New Braunfels, Texas. The flight instructor and pilot receiving instruction were not injured, and the airplane was substantially damaged during the landing. The airplane was registered to and operated by a private individual, under the provisions of 14 Code of Federal Regulations Part 91 training flight. Visual meteorological conditions prevailed at the time.

The pilot reported to the Federal Aviation Administration (FAA) inspector, that they had been airborne about-an-hour and half and were conducting touch-go landings. On the last approach to the runway, as the pilot reduced engine rpm, the engine lost power. They selected a field for the forced landing. The landing gear collapsed during the landing, resulting in substantial damage to the airplane.

The wreckage was retained for further examination. 

Aircraft and Owner/Operator Information

Aircraft Manufacturer: PIPER
Registration: N7386P
Model/Series: PA 24 UNDESIGNATED
Aircraft Category: Airplane
Amateur Built: No
Operator: On file
Operating Certificate(s) Held: None 

Meteorological Information and Flight Plan

Conditions at Accident Site: Visual Conditions
Condition of Light: Day
Observation Facility, Elevation: KBAZ
Observation Time: 1451 CDT
Distance from Accident Site:
Temperature/Dew Point: 29°C / 18°C
Lowest Cloud Condition: Clear
Wind Speed/Gusts, Direction: 15 knots, 190°
Lowest Ceiling: None
Visibility: 10 Miles
Altimeter Setting: 29.83 inches Hg
Type of Flight Plan Filed:
Departure Point:
Destination: New Braunfels, TX (KBAZ) 

Wreckage and Impact Information

Crew Injuries: 2 None
Aircraft Damage: Substantial
Passenger Injuries: N/A
Aircraft Fire: None
Ground Injuries: N/A
Aircraft Explosion: None
Total Injuries: 2 None
Latitude, Longitude:





NEW BRAUNFELS, Texas - Two people were not injured after a small airplane made an emergency crash landing Thursday afternoon in a field near the New Braunfels Regional Airport.

Authorities were called to the regional airport on FM 758 at about 3 p.m. Thursday for reports of a small airplane making a forced landing in a field nearby. Emergency crews found a man and woman inside the plane that crashed at the 3000 block of Westmeyer Road in Guadalupe County.

The occupants told authorities the plane had mechanical problems during the flight. Neither person was injured in the crash, officials said.

The Texas Department of Public Safety and the National Transportation Safety Board are investigating.

Original article can be found here ➤ http://cbsaustin.com

Air Force Agrees to Change Aircraft Rescue and Firefighting Procedures; Pay $1.4 Million to Settle Andreini Death Lawsuit

Edward August Andreini 
 ~

By Mike Danko

Aerobatic hall of fame pilot Eddie Andreini was flying a routine at the Travis Air Force Base. He was attempting a stunt known as an inverted ribbon cut. Something went wrong. Eddie's Stearman slid upside down along the runway, coming to a stop at show center. His Stearman caught fire. Eddie couldn’t get out. The crowd watched, prayed, and waited for fire trucks to arrive. Some bystanders wanted to rush to the plane to help, but the announcer warned everyone to stay back and "let the firefighters do their job."

But the firefighters didn't do their job. By the time the trucks showed up, almost 5 minutes had passed. It was too late. Eddie, age 77, had burned to death.Eddie Andreini Inverted Ribbon Cut

When they couldn't get answers from Travis brass, Eddie's family sued the United States Air Force. The Air Force denied any liability. It claimed its response to Eddie's accident was "by the book;" that the trucks arrived on scene within the time set by all Air Force standards; and that the Air Force response to Eddie's mishap was otherwise in all respects "exemplary." Further, according to the Air Force, the fire spread so fast that Eddie could not have been saved regardless of how quickly trucks arrived. Finally, the Air Force claimed it was immune from the family's lawsuit because, first, the Air Force is an instrumentality of the United States Government, and second, Eddie had signed a waiver of liability before he took off.

We proved that the Air Force's rescue efforts didn't even meet its own standards. Trucks could have saved Eddie had they been positioned at show center.  But instead, the trucks were positioned more than a mile away. Finally, instead of being suited up and ready to respond during Eddie's performance, firefighters were wandering about the airfield in shirt sleeves taking pictures when the crash alarm rang out. We showed that, under the circumstances, the Air Force was not entitled to immunity from suit under the Federal Tort Claims Act.

With trial against the Air Force set to begin later this year, the Air Force agreed to change its procedures for protecting performers at its air shows across the country. From now on, it will position fire trucks so that they have immediate access to the show line. It will also have firefighters dressed and ready to go whenever a performer is in the air, eliminating the time needed after a crash for fire firefighters to get dressed and get to their trucks. Finally, the Air Force will pay the family $1.4 million, believed to be a record government payout for the death of a 77 year old.

It took four years of litigation to hold the Air Force accountable for its role in causing Eddie's death. But by persevering, the family helped ensure that lives of other performers will not be needlessly lost at Air Force air shows.

Original article ➤  http://www.aviationlawmonitor.com





The National Transportation Safety Board traveled to the scene of this accident.

Additional Participating Entity:
Federal Aviation Administration / Flight Standards District Office;  Sacramento, California 

Aviation Accident Final Report - National Transportation Safety Board:  https://app.ntsb.gov/pdf

Investigation Docket  - National Transportation Safety Board: https://dms.ntsb.gov/pubdms


Aviation Accident Final Report -  National Transportation Safety Board

Location: Fairfield, CA
Accident Number: WPR14FA182
Date & Time: 05/04/2014, 1359 PDT
Registration: N68828
Aircraft: BOEING E75
Aircraft Damage: Destroyed
Defining Event: Low altitude operation/event
Injuries: 1 Fatal
Flight Conducted Under: Part 91: General Aviation - Air Race/Show

Analysis

The highly experienced air show pilot was attempting to cut, with the vertical stabilizer of his biplane, a ribbon that was suspended about 20 feet above and across the runway. He was performing the maneuver on the third day of an open house at a United States Air Force (USAF) base and had successfully accomplished the maneuver on the two previous days, as well as at many previous air shows. After the pilot rolled the airplane inverted for the pass, witnesses observed it descend smoothly to the runway and slide to a stop. As the airplane came to a stop, a fire erupted, and the airplane was completely engulfed in flames within about 90 seconds of the fire’s start. The first fire suppression vehicle did not reach the airplane until more than 4 minutes after the fire began, and the fire was extinguished soon thereafter.

The investigation did not identify any preimpact mechanical deficiencies or failures of the airplane or any adverse weather conditions that contributed to the abnormal runway contact. Toxicology analysis detected therapeutic amounts of diphenhydramine, an over-the-counter sedating antihistamine, in the pilot’s blood, which likely impaired his ability to safely complete the maneuver and resulted in the abnormal runway contact.

The pilot was found lying on the upper panel of the cockpit canopy, and the canopy was found unlatched but in its closed position, indicating that when the airplane came to a stop, the pilot was likely conscious and attempted to exit the airplane; however, he was unsuccessful. The investigation was unable to determine when the pilot released his harness restraint system. If he released his harness before attempting to open the canopy, he would have fallen onto the canopy, which would have significantly increased the difficulty of opening the canopy. Even if the pilot did not release his harness before attempting to open the canopy, airframe damage and the canopy opening geometry would have prevented the full opening of the canopy, limiting the pilot’s ability to exit. Further, the canopy was not equipped with any emergency egress provisions, such as quick-release hinge pins. Finally, the pilot’s lack of a helmet or any fire protection garments increased his susceptibility to thermal injury and reduced his useful time to effect an exit, particularly given the rapidity of the fire’s spread.

Although initially a survivable accident, the combination of pilot egress difficulties, the rapid fire growth, and the more than 4-minute firefighting response time altered the final outcome. The USAF primarily based its Airport Rescue and Fire Fighting (ARFF) plan for the air show on Department of Defense (DoD) and USAF guidance. In preparation for the open house, the USAF show director had attended an International Council of Air Shows (ICAS) trade show and briefing, where he was provided with ICAS guidance material that advocated the highest state of readiness for the ARFF teams. This entailed prepositioning the ARFF equipment, with the ARFF personnel fully suited in their protective gear, ready for immediate travel to and engagement in the rescue and firefighting efforts. For undetermined reasons, either that information was not communicated to the show organizers and ARFF planners or the responsible personnel and departments elected to disregard it. The organizers and planners made the decision to maintain the facility’s ARFF readiness state at the DoD-defined “unannounced emergency” level during the air show, instead of the highest state of ARFF readiness advocated by ICAS. Based on the available evidence, if the ARFF teams had been at the highest state of ARFF readiness, the pilot’s likelihood of survival would have been significantly increased.

The hazards imposed by low-level inverted flight included inadvertent ground contact, impact damage, and fire. The pilot had multiple strategies available to manage or mitigate the hazards’ attendant risks. These included ensuring that he was in appropriate physiological and psychological condition to operate safely, wearing appropriate protective clothing, and ensuring an appropriate level of airplane crashworthiness including occupant escape provisions. The availability of ARFF services represented the final element of the risk management process, necessary only if all the other strategies failed or were otherwise ineffective. In this accident, the pilot either intentionally or unknowingly weakened, defeated, or did not implement several risk mitigation strategies: he was likely impaired by medication, he did not wear any protective clothing, and his airplane was not well-equipped from an occupant-escape perspective. The combination of these factors then resulted in the pilot being fully dependent on the timely arrival of ARFF personnel and equipment for his survival. The failure of the ARFF personnel and equipment to be at their highest level of readiness and to arrive in a timely manner was not the first, but rather the last, failed element of the overall risk-management scheme. 

Probable Cause and Findings

The National Transportation Safety Board determines the probable cause(s) of this accident to be:
The pilot’s failure to maintain clearance from the runway during a low-level aerobatic maneuver due to his impairment by an over-the-counter antihistamine. Contributing to the severity of the pilot’s injuries were the pilot’s lack of fire protective clothing, his inability to egress the cockpit, the rapid spread of the fire, and the decision of the air show’s organizers not to have the airport rescue and firefighting services at their highest level of readiness, which delayed arrival of fire suppression equipment.



Findings

Aircraft
Altitude - Not attained/maintained (Cause)

Personnel issues
OTC medication - Pilot (Cause)
Aircraft control - Pilot (Cause)

Environmental issues
Emergency/fire/rescue services - Ability to respond/compensate (Factor)

Factual Information

HISTORY OF FLIGHT

On May 4, 2014, about 1359 Pacific daylight time, a Boeing E75, N68828, was destroyed when it impacted runway 21R during an aerial demonstration flight at Travis Air Force Base (SUU), Fairfield, California. The commercial pilot/owner received fatal injuries. The exhibition flight was operated under the provisions of Title 14 Code of Federal Regulations Part 91. Visual meteorological conditions prevailed, and no flight plan was filed for the flight.

The pilot was one of several civilian aerial demonstration pilots who performed at the 2-day SUU "Thunder Over Solano" open house, which included both static (ground) and aerial (flight) displays. According to United States Air Force (USAF) and Federal Aviation Administration (FAA) information, Friday, May 2, was the practice day, while the public event took place on Saturday and Sunday, May 3 and 4. The pilot flew two flight demonstration airplanes at the event; a North American P-51, and the accident airplane. All his flights preceding the accident flight were uneventful.

The accident occurred during a "ribbon-cut maneuver," whereby a ribbon was suspended transversely across the runway, between two poles held by ground crew personnel, and situated about 20 feet above the runway. The planned maneuver consisted of a total of three passes. The first two passes were to be conducted with the airplane upright, and were not planned to contact the ribbon. The final pass was to be conducted inverted, and the airplane would cut the ribbon with its vertical stabilizer. The first two passes were successful, but on the third (inverted, ribbon-cut) pass, the airplane was too high, and did not cut the ribbon. The pilot then initiated a fourth pass, and rolled the airplane inverted after aligning with the runway. The airplane contacted the runway prior to reaching the ribbon, slid inverted between the ground crew personnel holding the ribbon poles, and came to a stop a few hundred feet beyond them. A fire began as the airplane stopped. The pilot did not exit the airplane, and was fatally injured.

PERSONNEL INFORMATION

The 77-year-old pilot was a well known air show performer in the western United States. FAA records indicated that the pilot held a commercial pilot certificate, with single- and multi-engine airplane, and instrument airplane ratings, and was authorized to fly several experimental airplanes. His most recent FAA second-class medical certificate was issued in June 2013; on that application the pilot indicated that he had a total civilian flight experience of 11,400 hours.

AIRCRAFT INFORMATION

FAA information indicated that the airplane was manufactured in 1944, and was first registered to the pilot in 1982. The airplane was equipped with a Pratt & Whitney R-985 series engine. The fuselage and empennage consisted of a synthetic-fabric covered steel tube structure, while the wings were primarily wood structure covered with the same type of fabric. The airplane was equipped with two tandem cockpits enclosed by a single canopy; the pilot flew the airplane from the aft cockpit.

The canopy consisted of a light metal frame (aluminum and steel) and plastic transparencies. The canopy was not part of the original airplane design or configuration. According to maintenance record information, and information provided by the pilot's family, the canopy was designed by the pilot with help from Serv Aero in Salinas, California. It was a modified version of the canopy from a "Varga" airplane, and had been installed on the accident airplane in November 1985. The canopy was intended to "improve air flow over the elevator and rudder for better flight control," and to provide additional cockpit comfort, in terms of reduced noise and wind blast.

The longitudinal section of the canopy consisted of one fixed panel (right side) and two movable panels (top and left side). The top panel was longitudinally hinged to the fixed right panel and the movable left panel, and the forward and aft bottom corners of the left panel rode in transverse tracks at the forward and aft ends of the cockpit. That design allowed cockpit entry and egress by operating the top and left canopy panels in a manner similar to a bi-fold door; which required approximately 18 inches of clearance above the canopy for the canopy to be opened.

The 47-gallon aluminum fuel tank was mounted in the center section of the upper wing, just forward of the cockpit. The main fuel tank was equipped with a central filler neck with a cap that protruded about 1.5 inches above the tank upper mold line. Four non-metallic flexible fuel lines, one near each lower corner of the main tank, enabled fuel to be supplied from the main tank.

An aluminum header fuel tank, of approximately 3 gallons capacity, was mounted in the fuselage forward of the cockpit. An oil tank for smoke generation was mounted below and slightly aft of the header tank.

METEOROLOGICAL INFORMATION

The SUU 1358 automated weather observation included wind from 240 degrees at 15 knots gusting to 21, visibility 10 miles, few clouds at 18,000 feet, temperature 22 degrees C, dew point 12 degrees C, and an altimeter setting of 29.99 inches of mercury.

COMMUNICATIONS

SUU was equipped with an air traffic control tower (ATCT) that remained staffed and operational during the air show. However, during certain portions of the show, the ATCT ceded control of some of its designated airspace (and the aircraft within) to the air show "air boss." The Air Boss was defined by the FAA as the "individual who has the primary responsibility for air show operations on the active taxiways, runways, and the surrounding air show demonstration area." For this particular event, the Air Boss was a civilian who was well acquainted with the performers, performances, and overall show schedule. The Air Boss and pilots communicate directly with one another via radio. The ATCT and air boss coordinate closely to ensure continuous control of the airspace before, during, and after the show.

In response to an NTSB question, the USAF stated  that the "Air Boss turned over control of the airspace to tower and RAPCON [radar approach control] once airborne traffic was assigned to designated holding area behind the crowd. Tower/ground control managed access into the controlled movement area during the emergency response period via existing protocols. This was briefed at every safety brief before each day of flight, and the actual execution after the mishap followed the briefed plan."

According to the transcript of radio communications between the ATCT, the Air Boss, and aircraft, the first indication of the accident was at 1357:56, when the Air Boss transmitted "Tower, tower, tower, we need to, emergency trucks, roll em out, roll em, roll em, roll the emergency trucks." At 1358:02, an unknown person transmitted "alright," which was followed at 1358:04 by the Air Boss transmitting that he had the "airspace closed for the fire." The transcript did not include any communications regarding that reported closure.

At 1358:14, the ATCT controller transmitted "Tower's got the airspace," followed by the Air Boss 1358:15 transmission of "you got the airspace, you got the field, they are up and moving." At 1358:18, the ATCT transmitted "Roger, we got em rolling."

At 1359:01, the Air Boss asked "tower we got the trucks rolling?" to which the ATCT responded "affirmative and they're coming out to you on the runway now." At 1359:02, an unidentified person transmitted "Air Boss we need fire immediately he is trapped in the airplane and on fire." That discussion continued almost another minute.

At 1401:41, the ATCT transmitted to the Air Boss, who was attempting to land one of the airborne performers, to have that airplane go around, because "responder vehicles just turned on [to runway] two one left." At 1401:57, the ATCT informed the Air Boss that they would advise him when the runway was clear. No further communications regarding the ARFF vehicles or their clearance of the runway were included in the transcript, which ended at 1402:53.

Based on this transcript, the first ARFF vehicles entered the runway about 3 minutes 45 seconds after the first radio transmission announcing the accident.

AIRPORT INFORMATION

The airport was equipped with two primary runways. The two runways, designated 3/21R and 3R/21L were staggered such that the approach end of 3R was adjacent to the approach end of 21R. Runway 3l/21R was the primary air show performance runway, and measured 150 by 11,001 feet.

The static displays and spectator areas were situated on the northeast ramp area, northwest of runway 21R. The spectator area was situated about 1,000 feet from the northwest edge of runway 21R.

The air show "performance (or aerobatic) box" measured about 3,000 by 12,000 feet, and was situated on the northeast section of 3L/21R. Air show center was located approximately 1,200 feet beyond the threshold of runway 21R.

WRECKAGE AND IMPACT INFORMATION

The airplane impacted runway 21R. Ground scars consisted of rudder/ vertical stabilizer ("tail") and upper wing contact (metal and wood scrapes, and paint transfer) with the runway, as well as propeller "slash marks" approximately perpendicular to the direction of travel. Review of image and ground scar data indicated that the airplane first contacted the runway with its right wing, followed by the tail, the left wing, and then the propeller.

The upper outboard right wing initial scar was followed about 7 feet later by the tail strike, and then a few feet later by the upper left wing. The initial tail strike was located about 45 feet right (northeast) of the runway centerline, about 380 feet beyond the runway threshold. The initial direction of travel was aligned approximately 5 degrees to the right (divergent from) the runway axis. The propeller slash marks began about 100 feet beyond the initial tail strike, and continued to the final resting location of the airplane. The slash marks described an arc, which curved to the left. The airplane slid inverted, and traveled a total distance of about 740 feet. It came to a stop near the left (southwest) edge of the runway, on a magnetic heading of about 140 degrees. Review of still and video imagery revealed that the airplane came to a stop about 13 seconds after it contacted the runway.

Examination of the wreckage indicated that most of the fabric covering on the fuselage was damaged or consumed by fire. The right wing and cockpit furnishings were almost completely consumed by fire, as were some of the aluminum flight control tubes. The left wing and rudder /vertical stabilizer sustained impact deformation, but the cockpit occupiable volume was not compromised by deformation of any surrounding structure.

The fuel lines and the main fuel tank were fire damaged, and at least two thermal penetrations of the main fuel tank were observed; both were consistent with an on-ground fire. The main tank fuel cap was found installed and latched. The cap/neck and surrounding tank skin appeared to be depressed slightly into the tank, but it could not be determined whether the cap and neck leaked fuel after the impact. No evidence of any provisions for increased crashworthiness of the fuel system, such as frangible, self-sealing line couplings, was observed in the wreckage. Due to the level of damage, the investigation was unable to determine the initial source(s) of the fuel that resulted in the rapid growth of the fire.

Still and video images of the accident sequence, combined with on-scene observations, revealed that partial collapses of both the upper wing and the vertical stabilizer and rudder assembly, due to ground contact, resulted in the clearance between the top of the canopy and the runway surface being too small to allow the canopy to be fully opened. The canopy opening geometry was such that the relationship between the vertical travel of the canopy top and the actual opening provided was not linear; a small reduction in the vertical travel capability of the canopy top would result in a significant reduction in the size of the opening it afforded for cockpit egress. The canopy was not equipped with any emergency egress provisions, such as quick-release hinge pins.

All components, with the exception those consumed by fire, were accounted for. No evidence of any pre-impact engine or flight control problems was noted, and no evidence consistent with any pre-impact abnormalities or deficiencies that would have precluded continued flight was observed.

MEDICAL AND PATHOLOGICAL INFORMATION

In response to NTSB questions, the pilot's family reported that they were "not aware of any unusual or abnormal issues with either the pilot's sleep patterns before the accident or with the aircraft or the aircraft's maintenance or condition. The pilot was not ill and the family is not aware of any stressors." The family reported that his physical health and mobility was "good," and that he "was quite capable of climbing in and out of both the Stearman and the P-51." They described his mental acuity and awareness as "excellent."

In his most recent application for an FAA second-class medical certificate, the pilot reported high blood pressure, treated with amlodipine and hydrochlorothiazide. The pilot was issued that certificate with unrelated limitations regarding corrective lenses for vision.

The Solano County California County Coroner determined that the cause of death was extensive thermal injury. The pathologist did not identify evidence of blunt force trauma.

Toxicology testing performed by the FAA's Civil Aerospace Medical Institute did not identify levels of carbon monoxide above 10%. Testing identified amlodipine in heart blood and liver tissue. Cetirizine was detected in the heart blood, but below quantifiable levels. Cetirizine is a sedating antihistamine used to treat allergy symptoms, marketed under the brand name Zyrtec.

Toxicology testing also detected Diphenhydramine in the heart blood and urine. Diphenhydramine is a sedating antihistamine used to treat allergies, cold symptoms, and as a sleep aid. It is available over the counter under various names such as Benadryl and Unisom. Diphenhydramine undergoes postmortem redistribution to the heart blood. As a result, postmortem heart blood diphenhydramine levels may be increased by about a factor of three. The measured diphenhydramine level, when divided by three, was still within the therapeutic range.

FIRE

Review of video and still images revealed that fire became visible just as the airplane stopped moving, and some patches of fire were visible on the ground along an apparent fuel trail aft of the airplane. Once the airplane came to a stop, the fire appearance was initially consistent with a "pool fire," which is the combustion of a liquid pooled on the ground. However, the fire enlarged quickly, and within about 50 seconds, the fire encompassed most of the right (downwind) side of the airplane. The airplane was completely engulfed by the fire about 1 minute and 32 seconds after the airplane stopped.

Review of the still and video imagery, and the wreckage, indicated that at first the fire was consistent with liberated gasoline spilled on the ground, but the fire developed rapidly thereafter. It began consuming the airplane skin and structure, and damaged the fuel lines and tanks, which permitted the liberation of additional onboard flammable fluids, including gasoline and oil.

Review of photographic and other documentation indicated that the flames were no longer visible about 5 minutes and 17 seconds after impact, or about 15 seconds after truck-provided fire fighting agent began contacting the fire. USAF information indicated that the fire was "knocked down" (significantly reduced) about 6 minutes and 38 seconds after it started, and that it was extinguished about 9 minutes after it started. The fire-fighting activities are detailed in a separate section below.

ADDITIONAL INFORMATION

Survival Aspects

According to information provided by first responders, after the fire was extinguished, the pilot was observed to be within the cockpit, lying on his back on the upper canopy frame, with his head towards the tail. The airplane fuselage had settled slightly during or subsequent to the fire, so that the top of the canopy was resting on the runway surface. Photographs taken prior to the recovery of the pilot showed that the movable left side canopy panel was unlatched, but essentially in its closed position, with at least its aft guide pins still in the canopy track.

Due to lack of evidence, the investigation was unable to determine when the pilot unfastened his restraint system. With the airplane inverted, release of the restraint system prior to an attempt to open the canopy would result in the pilot's fall onto the canopy, which would interfere with his ability to open the canopy.

The pilot was not wearing a helmet, and there was no evidence that he was wearing any garments or equipment designed for thermal/fire protection, including gloves.

National Fire Protection Association

The National Fire Protection Association (NFPA) is a trade association that develops and distributes standards for fire fighting and rescue response, including airport ARFF equipment and staffing provisions. NFPA establishes recommended airport ARFF equipment and staffing provisions ("level of protection") based on "the largest aircraft scheduled into the airport." NFPA guidance did not cite any standards specifically or exclusively for air shows, airport open houses, or other non-standard situations or events.

NFPA Standard 403 (Standard for Aircraft Rescue and Fire-Fighting Services at Airports) included the following specifics regrading ARFF vehicle siting:

- ARFF vehicles shall be garaged at one or more strategic locations as needed to meet required response times.

- Emergency equipment shall have immediate and direct access to critical aircraft movement areas and the capability of reaching all points within the rapid response area (RRA) in the time specified.

- Therefore, the location of the airport fire station shall be based on minimizing response time to aircraft accident and incidents.

- The response time of the first responding ARFF vehicle to reach any point on the operational runway and begin agent application shall be within 3 minutes of the time of the alarm.

FAA Air Show Guidance and Requirements

The USAF/SUU required FAA approval to conduct its open house and air show. FAA approval was granted in the form of FAA Form 7711-1, "Certificate of Waiver or Authorization." Chapter 6 of FAA Order 8900.1 contained the guidance for the issuance of the waiver/authorization. The USAF/SUU ("the applicant") was responsible to apply for the waiver/authorization to the responsible FAA office, which was the Sacramento Flight Standards District Office (FSDO). The Order specified that the FAA inspector assigned to the event "should work closely with the responsible [event] person to develop normal and emergency plans, briefings, and checklists." The waiver for the air show was approved by the FAA on March 28, 2014.

Order 8900.1 required that the applicant "should attach current, properly marked maps, drawings, or photographs of the planned area of operation" which must include the "location of the boundaries of the air show demonstration area, the location of the primary spectator area, [and] the location of the emergency vehicles and medical facilities."

Order 8900.1 required that a pre-show briefing must occur on every day of the show, and provided guidance in both narrative and checklist form. The guidance specified that attendees should include all air show pilots, the Air Boss, air traffic control, the "fire chief/CRS" [crash/rescue services], and an FAA representative. One of the mandatory elements of the briefing was that "the fire fighting and emergency services equipment available, including their location and the access routes to be kept clear, must be discussed."

Travis Fire Emergency Services Flight

The Travis Fire Emergency Services Flight (TFES) was established to provide emergency services to Travis Air Force Base (TAFB). The Travis Fire Emergency Service Flight is assigned to the 60th Civil Engineer Squadron, 60th Mission Support Group, 60th Air Mobility Wing, 18th Numbered Air Force, Air Mobility Command.

A document entitled the Travis Fire Emergency Services Standards of Cover (SOC) was written by the 60th Civil Engineer Squadron (CES) Fire Emergency Services Flight division to "define the distribution and concentration of fixed and mobile resources available to TFES." The document introduction stated that the "SOC is a system that includes an analysis of risks and expectations to assist in making decisions on force deployment issues." The SOC contained detailed information about ARFF staffing, equipment, and facilities, as well as protocols, priorities, and performance metrics.

USAF/SUU Emergency Services Planning

The February 2014 edition of the USAF/SUU "Installation Emergency Management Plan" provided detailed guidance on that topic. Appendix 2 ("On Base Aircraft Accident/Major Accident Response") included the following guidance for specific responsibilities and duties:

Emergency Communications Center:

- Develop safe route if time/situation permits

- Dispatch the appropriate resources required for initial response

- Maintain contact with responding [incident commander] and responders

- Ensure follow-on communications are prioritized and processed

Air Traffic Control Tower:

- Activate the primary crash phone network

- Ensure taxiing and airborne aircraft are advised of emergency information

- If feasible, obtain basic overhead survey information from local flights

- Ensure [approach control] is informed

Review of the ATCT transcripts and other documentation indicated that the relevant items were complied with.

USAF and SUU ARFF Guidance and Provisions

Department of Defense Instruction (DoDI) 6055.06, ("Fire and Emergency Services Program"), contained the applicable ARFF response criteria pertaining to response time, fire fighting vehicle agent requirements, and minimum ARFF vehicle staffing for its facilities, including SUU.

DoDI 6055.06 delineated required response time criteria as a function of which of two categories, "announced" or "unannounced," the particular emergency event falls into. Unannounced emergencies are those that occur at the facility during normal operational activities, without any prior notification to the ARFF command that a problem is either likely or is developing. For unannounced aircraft incidents or accidents, DoDI 6055.06 requires that "ARFF apparatus will be capable of responding to any incident/accident on the runway(s) within 5 minutes." Response time begins when ARFF crews receive notification of an emergency and ends when the first ARFF vehicle that is capable of expending fire fighting agent arrives at the aircraft incident/accident. The remaining primary ARFF vehicles must arrive on scene at intervals not exceeding 30-seconds.

In contrast, "announced" emergencies are those where the ARFF command has received an indication of a problem or potential problem, such as an aircraft inbound with a mechanical problem or fire. Announced emergencies assume that ARFF equipment has been pre-positioned for that emergency. For announced emergencies, DoDI 6055.06 requires that "ARFF apparatus will be capable of responding to any incident on the runways within 1 minute."

The USAF uses Air Force Instruction (AFI) 32-2001 ("The Fire Emergency Services Program"), as the means to identify service specific requirements to implement DoDI 6055.06. Based on that guidance and DoDI 6055.06, the USAF/SUU considered the air show activities to be normal operations, and that the required response times were per unannounced emergencies (5 minutes).

The investigation did not determine whether the Air Boss or any performers were aware of those two standards, or that the "unannounced emergency" standard was the one used by the USAF/SUU for the event.

USAF Open House Guidance

Additional guidance was provided by USAF publication AFI 10-1004 ("Conducting Air Force Open Houses"), with a most recent issue date of February 2010. That document provided additional guidance, including the following:

- "The safety of the spectators is of utmost importance"

- Vehicles and aircraft that would "obstruct spectators' view of the show line" should be repositioned

- "The FAA requires that the aerobatic box be void of all people not specifically participating in the demonstration"

- Personnel in the aerobatic box "should be kept to a minimum," and those personnel are only permitted there provided they are "properly briefed, are in communication with the Air Boss, and all [show] participants are aware of them."

- "Emergency vehicles will be pre-positioned...as not to be 'trapped' behind the crowd control lines"

The document did not provide any guidance on ARFF response times or ARFF personnel readiness.

SUU Fire Station Information

The SUU ARFF rating was categorized as an NFPA Airport Category 10 airfield. NFPA Category 10 is the highest level of ARFF protection, in terms of type and amount of ARFF equipment. The USAF/SUU aircraft which resulted in the category 10 rating (and agent quantities) were significantly larger than the accident airplane. Air Force ARFF categories are consistent with NFPA-specified airport categories, agent levels, and vehicle requirements.

According to information provided by the USAF, the normal complement and stationing of SUU ARFF vehicles was:

Fire Station 1- one T-3000 (3,000 gallons, "g"), two P-23s (3,300 g each), 1 RIV[Rapid Intervention Vehicle]  (400 g)

Fire Station 3- one P-23 (3,300 g)

SUU modified its normal ARFF provisions and equipment stationing for the air show. According to USAF information, SUU "FES placed additional vehicles...adjacent to the runway. SUU FES placed assets at all three flight line fire stations (1, 3, & 4) as follows:

Fire Station 1 - two P-23s, one T-3000.

Fire Station 3- one P-23, one RIV.

Fire Station 4 - one P-23, one RIV, one P-26 5,000 gallon water tender.

According to USAF/SUU documentation, there were one primary and three secondary "crash response" locations designated for the air show. The primary facility (designated "Fire Station 1", or "FS 1") was located at approximately air show center (the longitudinal center of the designated performance box), but was situated behind the spectators; the spectators were located between the facility and the flight line. That facility was located about 1,000 feet from the closest edge of the performance box. There was no pre-established clear path through the spectators to enable the FS 1 ARFF vehicles to drive directly to the nearest boundary of the flight line or performance box.

In response to an investigation query regarding the location of FS 1 ARFF vehicles and personnel behind the spectators, the USAF/SUU stated that "Prioritization discussions, for the top hazards based on credible threat, took place to identify the most hazardous conditions to anticipate. It was determined that the number one priority, for all response entities, was that of the life hazard to the anticipated 200K+ visitors over the weekend." In other words, the primary responsibility of FS 1 was the attendees, and such positioning provided FS 1 with unrestricted access to the attendees. That rationale accounted for the designation of FS 1 as the "primary" FS, even though it was not the primary FS for the flight line. Flight line response was categorized as a "backup" responsibility of FS 1.

A secondary crash facility was located at each of the northeast and southwest corners of the performance box/flight line. The station at the northeast corner was designated "FS 3," and the station at the southwest corner was designated "FS 4."  No spectators, personnel, buildings, or vehicles were situated between either of those two facilities and the flight line. Hence, despite their "secondary" designation in some documents and communications, FS 3 and FS 4 were actually the two primary ARFF facilities for the flight line.

The USAF/SUU stated that FS 4 was only used for the air show, and that for the show it also housed a "Fire Command and Control vehicle/person along with Flight Medicine Ambulance with a Doctor." The USAF/SUU stated that the siting of the attendees "centralized in front of bldg. 38 (Fire Station #1) was a primary concern of the FES flight driving us to adjust our assets" by temporarily using FS 4. In this configuration for the air show days, FS 3 and FS 4 were the two stations with primary responsibility for the flight line.

The USAF/SUU stated that on May 2nd (the air show practice day) ARFF vehicles were stationed, per their normal configuration, at FS 1 and FS 3. FS 4 was not staffed that day because "there was a clear path of travel from fire station 1 to the runway," due to the fact that the spectators were not present.

The fourth facility (FS 2) was situated in a hangar within an SUU building complex, about 4,000 feet northwest of air show center. That facility was designated primarily for structural (building/facility) responses.

In its formal response to NTSB queries, the USAF/SUU stated that "Posturing of vehicles were vetted and approved via the FAA waiver process and [in accordance with] AFI 10-1004 and the FAA 8009 [sic; should be "8900"] series regulations. There were no discussions leading up to the event from any performer, FAA rep, or fire rep that indicated placement of equipment was inadequate for safety and/or response time." The USAF/SUU also noted that the 2014 "ARFF posting plan was consistent with previous shows at Travis AFB."

Ground Vehicle Access to Movement Areas

Travis Air Force Base Instruction (TAFBI) 13-213 ("Airfield Driving"), with a most recent pre-accident issue date of December 2013, prohibits any vehicles from entering the Controlled Movement Area (CMA) without specific approval from the air traffic control tower. According to TAFBI 13-213, the CMA "is comprised of both runways, the landing zone, overruns, 100 feet on either side of the runways." The guidance also stated that "Everyone must read back all ATC instructions verbatim. All vehicles will stop at the VFR hold line and request permission to enter the CMA." It continued with "All emergency response vehicles must have approval from the Tower or authorized vehicle escort, to enter the CMA" and "Vehicles responding to an emergency on the runway must NEVER assume they have blanket permission to enter the runway after an emergency aircraft lands. All vehicles MUST call tower and receive permission to enter the runway PRIOR to accessing it."

The USAF-produced transcript of the ATCT communications did not include any communications to or from any ARFF vehicles, and no ARFF vehicle communications were provided to the investigation. This absence of data precluded a determination of whether any CMA access permission issues contributed to ARFF vehicle response delays.

Ground Vehicle Speed Limit Information

TAFBI 13-213 presented the following speed limit information:

- Aircraft Parking Ramps - 15 MPH maximum for general purpose vehicles

- Taxiways - 15 MPH unless otherwise posted

- Perimeter Road - 35 MPH maximum or as posted

- "Emergency response vehicles may exceed 10 MPH above their speed limit when responding to an emergency/alert and with rotating beacon lights and/or emergency flashers. However; emergency/alert vehicles should not assume the right of way and must use the utmost safety and caution when responding."

The TEFS SOC included a study to determine the effectiveness of its normal-configuration ARFF locations, and to evaluate the expected travel times to the ends of the two runways, as compared to the 3 minute travel time objectives set forth in AFI 32-2001 ("Fire Emergency Services"). The study used a standard vehicle speed of 45 mph for consistency with NFPA Standard 403. The SOC did not explain or justify why the study used that fixed speed, when it differed significantly from some of the actual SUU speed limits. That study concluded that ARFF vehicles from FS 1 could not meet the AFI 32-2001 standard, while vehicles from FS 3 could, with a margin of 17 seconds.

Due to lack of data, the investigation was unable to determine any ARFF vehicle speeds during the response, or what effect their speeds had on their response times.

ICAS Information

According to its website, the International Council of Air Shows (ICAS) is a trade and professional association intended to "protect and promote their interests in the growing North American air show marketplace." The current ICAS mission statement is that the organization is "dedicated to building and sustaining a vibrant air show industry to support its membership. To achieve this goal, ICAS will demand its members operate their business at only the highest levels of safety, professionalism, and integrity."

ICAS actively produces and disseminates guidance regarding many aspects of air shows. One ICAS guidance document is the "Air Show Manual (ASM)," which was most recently revised in 2004. The manual includes information regarding pre-show performer briefings, and facility provisions for ARFF.

ICAS does not directly provide guidance or best practices on what a performer should wear at an air show. According to an ICAS representative, ICAS "strongly urge[s] performers to consider the benefits of the myriad of options they have," but makes "no official stance that performers must wear specific fire-protective clothing."

On May 16, 2014, ICAS published "OPS BULL" (operations bulletin) Volume 8, Number 4. That bulletin cited the subject accident, and then provided a nearly a two page discussion of "CFR" (crash fire rescue) guidance for air show performers and presenters. Verbatim citations included the following:

"...the response times required for these airports to meet standards are not suitable for an air show environment. It is essential to communicate the following needs to ensure that CFR response time is kept to a minimum."

"CFR Teams at the ready – Often one of the largest sources of contention between event organizers and CFR is the need for them to be ready to go instantaneously. It is expected that CFR crews are suited up (with jackets and hoods at the ready) and in the trucks with the engine running and ready to go. At no time should CFR crews have family or friends at the trucks. Folding chairs and any other items should never be positioned in front of the trucks. If enough crews are unavailable to provide breaks, then food and beverage should be brought to the trucks and a portable restroom provided at each truck."

"Placement of CFR vehicles – ARFF trucks should be tactically prepositioned to provide the shortest and most direct routes to show center. While every airport layout is different (location of connecting taxiways, terrain, etc.) a general guideline would be to have trucks located at both ends of the crowd line or at the corner markers, and another truck (preferably a fast attack vehicle) located at show center."

"Concerning Response Times, the industry standard is that rescue vehicles are expected to be on the roll within 10 seconds of impact. Understanding that no two airfields are the same, it is expected that by thoughtful prepositioning of your equipment, ARFF equipment should be at the incident site and engaged within 60 seconds." Follow-up communications with ICAS indicated that in fact there is no 10-second "industry standard," but that ICAS is actively engaged in an industry effort to modify relevant guidance and practices.

ICAS-USAF/SUU Communication and Coordination

In December 2013, in preparation for the upcoming May 2014 SUU open house, two USAF/SUU officers attended the annual ICAS tradeshow. One of those attendees was the newly-appointed Director of the 2014 SUU open house. Tradeshow workshops attended by one or both of the officers included the topics of the FAA waiver process, and an ICAS-presented session which included a brief discussion of safety-related information.

One of the documents obtained from that tradeshow by the Director was a hardcopy version of an ICAS publication entitled "Air Shows 101: Air/Ground Operations Training." One article in that document was entitled "How to Effectively Pre-Position ARFF Equipment at Your Airshow." Relevant guidance included:

- The information requested by the FAA air show waiver application document "regarding ARFF staging is very limited," and that while completion of the application document "may satisfy the FSDO's need... certainly more planning and preparation is required to be ready to meet any emergency"

- "Pre-position ARFF equipment in a location(s) to provide the most direct and quickest response time"

- "Ensure that all ARFF personnel and equipment are ready to roll immediately." ICAS cited this as "one of the biggest issues at many events," elaborating that "if [ARFF personnel] are not ready to roll immediately they might as well be back in the air-conditioned  fire house," and that the personnel must be "suited up, [with] equipment at the ready." The guidance continued, stating that "these issues are far too common at airshows" and that "those few seconds could be the difference between life and death."

According to USAF/SUU information, the "Air Shows 101" document was used as guidance for some of the open house preparations, but it was not duplicated either in hardcopy or electronically. In addition, the document was not provided to any members of the USAF/SUU FES who were responsible for the open house ARFF planning. The investigation was unable to determine whether, or how much of, the guidance in that article was relayed to the FES planners.

Although the Air Boss and many performers were members of ICAS, ICAS did not and does not communicate, coordinate, or contract directly with air show host organizations. Thus, the responsibility for ensuring appropriate ARFF arrangements falls to the host organization, the Air Boss, and the individual performers. Despite several requests, the investigation was unable to obtain details of any communications between the USAF/SUU and either the Air Boss or the performers regarding ARFF provisions and arrangements, particularly any matters of ARFF personnel and vehicle stationing and states of readiness.

Daily Briefings

In accordance with FAA and ICAS guidance, pre-show briefings for the performers and other relevant personnel were held each day of the show, including the practice day.  The Air Boss conducted the briefing. Performers who did not attend a briefing were prohibited from flying that day. The Powerpoint presentation that was used by the Air Boss for the briefings was provided to the investigation. That presentation contained several slides regarding safety, and two slides which depicted the locations of the ARFF stations.

According to the USAF/SUU, USAF/SUU FES personnel attended all three practice and show days of those meetings, and answered questions as asked. Those meetings were attended by the Fire Chief, Deputy Chief, Assistant Chief of Training, or the Special Operations Officer.

Air Show Performer Briefings and Comments

In accordance with FAA and ICAS guidelines, on a daily basis prior to every show, the performers attended the pre-show briefs, where, among other topics, they were advised of the ARFF provisions and arrangements, and had the opportunity to directly question ARFF representatives, the Air Boss, and other cognizant personnel.

The investigation questioned (via telephone and/or email) both the Air Boss and the performers in order to understand what each of them knew regarding the ARFF arrangements and protocols for the show. Items of note from those communications included:

- Per USAF/SUU protocols, the performers and their support personnel were prohibited from personally responding to any emergencies such as accidents or fires. The USAF/SUU position was that those types of situations were better handled by the ARFF "professionals," with the apparent underlying rationale that precluding non-ARFF personnel participation would minimize the potential for confusion, additional injuries, or other undesired outcomes.

- At least one performer was concerned about an event at another USAF base air show the week before, where the base ARFF personnel were not suited in their protective gear at the time of the event, which delayed their response time. The audience was assured that this would not be the case for the current shows at SUU; one performer noted that the USAF/SUU ARFF personnel seemed dismissive of that performer's concern.

- Other performers expressed concern that there were no plans to station ARFF personnel or equipment on the flight line near air show center, and that the primary ARFF fire station (FS 1) was separated from the flight line by the spectators, without an open, direct path to the flight line. Reportedly the Air Boss had requested that the USAF/SUU position ARFF personnel and equipment at the flight line near air show center, but the USAF/SUU refused to alter the ARFF arrangements.

Only a few performers were forthcoming with responses to NTSB queries for detailed information about their concerns and the discussions in the meetings, and far fewer were willing to provide such information for attribution. Several referred those NTSB queries to the Air Boss. Only limited information was able to be obtained from the Air Boss regarding ARFF questions and discussions.

Impact Sequence Derivation from Accident Witness Statements and Images

Because the accident occurred close to "air show center" of a well-attended event, there was a wealth of eyewitness reports, and still and moving images. The winds were somewhat gusty, and some witnesses opined that they believed that the runway contact was gust-induced. The airplane was not equipped with any location or flight control position recording devices to enable development of a flight trajectory.

The image data was evaluated to derive a partial sequence of events, and relevant timeline information. Video imagery depicted the airplane rolling inverted, then descending and initially leveling out at an altitude not low enough for the planned ribbon cut, followed by a descent which continued to the runway surface. Lack of viable reference objects in the image field precluded any trajectory analysis of the airplane from those videos.

One series of still images captured the last 2 seconds of the descent to the runway, with sufficient reference objects to yield a trajectory depiction. Evaluation of the images, in correlation with the timing of the photographs, enabled a coarse trajectory analysis. The images depicted a relatively steady descent to the runway, with no obvious gross control surface deflections or airplane attitude variations. The roll attitude was approximately 5 to 10 degrees right wing down during the end of that descent and the initial runway impact.

Another series of still images that captured the descent, impact, and slide were of sufficient detail to enable the determination that the pilot's upper body was in a position that was not consistent with loss of consciousness. Even though the airplane was inverted, the pilot's head remained in an attitude consistent with looking forward, and his left arm remained in a position consistent with him continuing to keep his hand on or near the engine and propeller controls.

First Responder Statements

The USAF/SUU provided copies of written statements from a total of 15 first responders. The statements were in narrative form, and thus somewhat inconsistent in terms of content and level of detail. The statements, in combination with eyewitness recounts and image data, assisted in developing the post accident sequence of events.

Of the 15 statements provided, only 4 contained references to personal protective equipment (PPE) and self-contained breathing apparatus (SCBA). All four statements noted that the authors took time between notification and arrival on scene to don their PPE and/or SCBA.  Those four first responders were from three different vehicles (P45, P245, and Crash 13), from the two primary flight line fire stations, FS 3 and FS 4. None of the statements provided any additional detail re the PPE, or what the first responders' required or actual states of preparedness were.

Several first responder statements made references to obtaining clearance from the air traffic control tower prior to entering the accident runway, but there was insufficient data to determine what, if any, delays that ATC clearance requirements might have caused in the response times of the ARFF vehicles.

ARFF Response Timing

Review of the photographic coverage of the accident and ARFF response enabled the development of an event timeline. The airplane came to a stop about 13 seconds after the wing first contacted the runway. Fire began just prior to the end of the ground slide, and the airplane was completely engulfed in flames 1 minute and 32 seconds after it came to a stop. The first fire suppression activity occurred about 2 minutes and 15 seconds after the fire began, in the form of an individual with a handheld fire extinguisher. Those efforts had no visible effect on the fire.

The first ARFF vehicle to put extinguishing agent on the fire arrived about 4 minutes and 13 seconds after the fire began. That vehicle was the RIV P-245 from FS 4. That agent application did not have any visible effect on the fire. The next ARFF vehicle to put extinguishing agent on the fire arrived about 49 seconds later, about 5 minutes and 2 seconds after the fire began. That vehicle was "Crash 10," also from FS 4. The visible fire diminished rapidly and significantly with that agent application. About 8 seconds later, the first vehicle from FS 1, "Crash 9," arrived and began applying extinguishing agent. That application, in combination with that from Crash 10, extinguished the visible fie. The first vehicle from FS 3 appeared to be "Ramp Patrol 45," which arrived about 5 minutes and 22 seconds after the fire began. That vehicle did not appear to apply extinguishing agent. "Crash 13," also from FS 3, arrived about 6 minutes and 44 seconds after the fire began.

According to USAF/SUU information, the ARFF personnel reported that the fire was "knocked down" (significantly reduced) about 2 minutes 25 seconds after the arrival of the first ARFF vehicle, and was extinguished about 2 minutes and 55 seconds after the arrival of that vehicle.

ARFF Response Times vs Standards

DoDI 6055.06 also defined the three time segments that comprised the overall ARFF response time, and specified the individual time limits, as "Minimum Level of Service Objectives," for each of those segments, as follows:

Dispatch Time: The point of receipt of the emergency alarm at the public safety answering point to the point where sufficient information is known to the dispatcher and applicable units are notified of the emergency.

Turnout Time: The time beginning when units are notified of the emergency to the beginning point of travel time.

Travel Time: The time that begins when units are enroute to the emergency incident and ends when units arrive at the scene.

For unannounced emergencies, the minimum level of service time objectives were:

Dispatch Time: 60 seconds

Turnout Time: 60 seconds

Travel Time: 180 seconds

The sum of those three times resulted in the 300 second (5 minute) total response time. That response time applied only to the arrival of first vehicle with fire fighting capability. Subsequent to the arrival of that vehicle, the DoDI standard then specified that additional vehicles should arrive within 30-second intervals.

In contrast, the "announced emergencies" condition presumed the full preparation (PPE and SCBA donned) and pre-positioning of the ARFF personnel and vehicles, which resulted only in the citation of a minimum objective of a 1 minute response time, with no segment breakouts.

Radio communications and image data (still and video) enabled a partial determination of ARFF response segment times. The dispatch notification occurred about 18 seconds after the airplane came to a stop, which was within the 60-second objective. The turnout times were able to be calculated for seven vehicles. None of the turnout times were within the 60-second performance objective. The minimum turnout time, which was for the first vehicle to arrive at the airplane, was 1 minute and 59 seconds, which was 59 seconds longer than the specified objective. The remainder of the calculated turnout times ranged from 2 minutes and 20 seconds to 7 minutes.

Travel times were only able to be calculated for four vehicles, all of which were from the two flight line fire stations. The first vehicle on scene had a travel time of about 1 minute and 31 seconds, and the third vehicle on scene had a travel time of about 1 minute and 40 seconds. The sixth vehicle had a travel time of about 2 minutes and 28 seconds, while the seventh vehicle exceeded the travel time objective, with a time of 3 minutes and 30 seconds, 30 seconds longer than the performance objective. The reason for the extended travel time of the seventh vehicle was not able to be determined.

Hazard and Risk Management

The following paragraphs describe the underlying concepts of hazard, risk, and risk management, and have been paraphrased from the FAA Risk Management Handbook (FAA-H-8083-2).

A hazard is a condition, event, object, or circumstance that could lead to or contribute to an unplanned or undesired event such as an accident. Risk is the future impact of a hazard that is not controlled or eliminated. Risk is the product of two elements; the likelihood of the occurrence of the hazard, and the severity of the hazard.

Risk management is the method used to control, reduce, or eliminate the hazard, by reducing or eliminating the likelihood, severity, or both, of that hazard. It is a decision-making process designed to systematically identify hazards, assess the degree of risk, and determine the best course of action. Risk management must be an active, conscious, and methodical activity. Compliance with appropriately designed procedures constitutes a significant component of risk management in flight operations. Hazard identification is critical to the risk management process; if the hazard is not identified, it cannot be managed.

Post Accident Changes

The USAF Fire Chief coordinated with ICAS to revise the USAF ARFF response procedures; those revised procedures were published in September 2014 in the USAF ARFF Response Guide (AFCEC-403-14). The document contains a section entitled "Air Show Safety," and also a list of related best practices. The USAF Fire Chief is also coordinating with DoD counterparts to develop or integrate some similar modifications to   DoDI 6055.06, and assisting in similar efforts to revise NFPA Standard 403.

Finally, the Fire Chief serves as the Chairman of the NATO (North Atlantic Treaty Organization) Crash Firefighting Rescue Panel, and the panel has agreed to add many of the same guidance modifications to the NATO Standardization Agreement (STANAG) 7048, "Crash, Fire-Fighting and Rescue (CFR) Response Readiness." 

History of Flight

Maneuvering-low-alt flying
Low altitude operation/event (Defining event)
Collision with terr/obj (non-CFIT)

Post-impact
Fire/smoke (post-impact) 

Pilot Information

Certificate: Commercial
Age: 77, Male
Airplane Rating(s): Multi-engine Land; Single-engine Land
Seat Occupied: Rear
Other Aircraft Rating(s):  None
Restraint Used:
Instrument Rating(s): Airplane
Second Pilot Present: No
Instructor Rating(s): None
Toxicology Performed: Yes
Medical Certification: Class 2 With Waivers/Limitations
Last FAA Medical Exam: 06/04/2013
Occupational Pilot: Yes
Last Flight Review or Equivalent:
Flight Time: 11400 hours (Total, all aircraft) 

Aircraft and Owner/Operator Information

Aircraft Manufacturer: BOEING
Registration: N68828
Model/Series: E75
Aircraft Category: Airplane
Year of Manufacture:
Amateur Built: No
Airworthiness Certificate: Experimental
Serial Number: 75-5681
Landing Gear Type: Tailwheel
Seats: 2
Date/Type of Last Inspection:  04/15/2014, Annual
Certified Max Gross Wt.:
Time Since Last Inspection:
Engines:  Reciprocating
Airframe Total Time: 2160 Hours as of last inspection
Engine Manufacturer: Pratt & Whitney
ELT:
Engine Model/Series: R-985
Registered Owner: On file
Rated Power:
Operator: On file
Operating Certificate(s) Held: None

Meteorological Information and Flight Plan

Conditions at Accident Site: Visual Conditions
Condition of Light: Day
Observation Facility, Elevation: SUU, 51 ft msl
Observation Time: 1358 PDT
Distance from Accident Site: 0 Nautical Miles
Direction from Accident Site:
Lowest Cloud Condition: Few / 18000 ft agl
Temperature/Dew Point: 22°C / 12°C
Lowest Ceiling: None
Visibility:  10 Miles
Wind Speed/Gusts, Direction:  15 knots/ 21 knots, 240°
Visibility (RVR):
Altimeter Setting:
Visibility (RVV):
Precipitation and Obscuration: No Obscuration; No Precipitation
Departure Point: Fairfield, CA (SUU)
Type of Flight Plan Filed: None
Destination: Fairfield, CA (SUU)
Type of Clearance: None
Departure Time:  PDT
Type of Airspace:

Airport Information

Airport: Travis AFB (SUU)
Runway Surface Type: Concrete
Airport Elevation: 51 ft
Runway Surface Condition: Dry
Runway Used: 21R
IFR Approach: None
Runway Length/Width: 11001 ft / 150 ft
VFR Approach/Landing:  None 

Wreckage and Impact Information

Crew Injuries: 1 Fatal
Aircraft Damage: Destroyed
Passenger Injuries: N/A
Aircraft Fire: On-Ground
Ground Injuries: N/A
Aircraft Explosion:  None
Total Injuries: 1 Fatal
Latitude, Longitude:  38.264444, -121.924167 (est)