Wednesday, April 1, 2015

University of Wyoming Aims to Replace King Air Research Aircraft

April 1, 2015 — For more than 38 years, the Beechcraft King Air 200T, the University of Wyoming’s research aircraft, has flown into weather most pilots would rather avoid. For the sake of science, the plane has breached heavy snow and thunderstorms to learn more about how these precipitations occur and act in the atmosphere.

But the atmospheric research aircraft is approaching its limits, say UW researchers who use and manage the research facility. Limited to 10,000 flight hours under Federal Aviation Administration restrictions, the plane is quickly approaching the 8,000 flight-hour threshold.

While the plane is still safe for more research missions, now is the time to begin plans to replace the twin-engine turboprop, says Al Rodi, professor in UW’s Department of Atmospheric Science.

“The aircraft is nearing the end of its life,” says Rodi, who serves as facility manager for the research King Air and director of UW’s Flight Center. “We’re getting to the point of being nervously close. It’s time to look forward to a new airplane.”

Earlier this month, as part of UW’s supplemental budget request, the state Legislature provided $250,000 in one-time funding for UW to begin planning for acquisition and equipping of a new research aircraft.

UW has owned the King Air since 1977, when it was purchased for $1 million. Over the ensuing years, additional millions have been spent for instrumentation and airframe modification, such as for radar and LIDAR.

But, as the years go on, such new installations, as well as maintenance, become increasingly difficult, says Jeff French, project manager of King Air and a UW assistant professor of atmospheric science. In 1977, no one envisioned you would want to have a computer inside the aircraft with instruments on the wing communicating via fiber-optic cable, he says.

“We’re constantly coming up with new instruments. Every time you come up with a new instrument, you have to find a way to bolt it onto the airframe,” French explains. “With a new aircraft, you can start with a clean slate. With an old plane, you have to work with the modifications you have. It becomes harder as you add new instruments.”

While numerous parts of the aircraft, such as the engine and avionics, can be maintained or replaced, it is the airframe or body that is limited to 10,000 flight hours, French says. The airframe eventually suffers from what French termed “metal fatigue,” which can result in cracks or micro-cracks to the aircraft’s structural integrity.

Either French or Larry Oolman, another project manager, flies on every King Air flight for safety and mission purposes. The project manager’s primary job is to ensure the scientist(s) and the pilot communicate in such a way that it leads to a successful mission, French says.

“The reason we think it’s a good idea to replace it (King Air) is because we don’t know how flying in turbulent conditions, such as thunderstorms, has affected it,” French says of the precipitation pounding the plane has taken over the years. “We don’t know how well the airframe has withstood the motions.”

Read more here: